
Disproof of Li An-Ping’s claims

regarding Salsa20

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
snuffle@box.cr.yp.to

1 Introduction

In a message posted 28 August 2005 to the ECRYPT Stream Cipher Project
forum, and in a paper posted 2 September 2005 titled “Linear approximating
for the Cipher Salsa20,” Li An-Ping claims that the Salsa20 output blocks are
noticeably biased in two ways.

This document demonstrates, by computer experiments with small word
sizes, that the two claimed biases do not exist. See Sections 3 and 4. One of
the virtues of Salsa20 is that it easily supports this type of experiment.

This document also pinpoints two fundamental errors in An-Ping’s argument
for these claimed biases. See Sections 5 and 6. There may be additional errors
in An-Ping’s “analysis,” but I see no reason to waste further time with this
garbage.

2 Generalizing Salsa20

Salsa20-w/r is a variant of Salsa20 with w-bit words and r rounds. Here w ∈
{2, 4, 6, 8, . . . , 32} and r ∈ {2, 4, 6, 8, . . . , 20}. In particular, Salsa20-32/20 is the
same as Salsa20.

The point of varying w is that small values of w can easily be studied on the
computer. Each key produces 24w output blocks; these blocks can be enumerated
when w is small. Clear patterns in output-block statistics for small values of w
and r can be safely extrapolated to larger values of w and r.

Please note that I am not recommending (e.g.) Salsa20-2/2 as a cipher for
general use. On the contrary: Salsa20-2/2 is trivially breakable; among other
problems, it has only 256 possible 4-word keys, and only 65536 possible 8-word
keys. However, given a hypothesis regarding Salsa20, the cryptanalyst should
generalize the hypothesis to Salsa20-w/r and then study a range of pairs (w, r),
including breakable pairs.

I make no claims of novelty for this type of generalization. Most block ciphers
consist of a large number of similar rounds, and have obvious generalizations to

? The author was supported by the Alfred P. Sloan Foundation. Date of this document:
2005.09.05.

any number of rounds; studying the effectiveness of attacks on a small number
of rounds is an extremely common cryptanalytic technique. Some ciphers also
have obvious generalizations to arbitrary word sizes; studying the effectiveness
of attacks on small word sizes is a moderately common cryptanalytic technique.

Definition of Salsa20-w/r

Salsa20-w/r uses w-bit words wherever Salsa20 uses 32-bit words. The encoding
of w-bit words as byte strings is not relevant to this document.

The Salsa20-w/r key can be either 4 words or 8 words. The Salsa20-w/r
nonce is 2 words. The Salsa20-w/r block counter is 2 words.

Salsa20-w/r starts with a 16-word array filled with the key words, nonce
words, block-counter words, and constants. The constants are the same (modulo
2w) as the initial constants in Salsa20.

The pattern of add-rotate-xor in each round of Salsa20-w/r is the same as
the pattern in each round of Salsa20. The rotation distances (modulo w) are
7, 9, 13, 18, as in Salsa20.

After r rounds, Salsa20-w/r adds its 16 words to the original words, exactly
as in Salsa20.

Software for Salsa20-w/r

Here is a reference implementation of Salsa20-w/r for 4-word keys. The first file
is salsa20_wr.h:

#ifndef SALSA20_WR_H

#define SALSA20_WR_H

extern unsigned int salsa20_wr_bits;

extern unsigned int salsa20_wr_max;

extern unsigned int salsa20_wr_rounds;

extern void salsa20_wr_4(unsigned int *,unsigned int *,

unsigned int *,unsigned int *);

#endif

The second file is salsa20_wr.c, to be compiled with constant bits and rounds

macros giving the values of w and r:

#include "salsa20_wr.h"

#define max ((unsigned int) ((2 << (bits - 1)) - 1))

unsigned int salsa20_wr_bits = bits;

unsigned int salsa20_wr_max = max;

unsigned int salsa20_wr_rounds = rounds;

#define WORD(b) (max & (b))

#define XOR(a,b) ((a) ^ (b))

#define PLUS(a,b) ((a) + (b))

#define ROTATE(a,b) (((a) << ((b) % bits)) \

| (WORD(a) >> (bits - ((b) % bits))))

static unsigned int tau[4] = {

’e’ + 256 * (’x’ + 256 * (’p’ + 256 * ’a’))

, ’n’ + 256 * (’d’ + 256 * (’ ’ + 256 * ’1’))

, ’6’ + 256 * (’-’ + 256 * (’b’ + 256 * ’y’))

, ’t’ + 256 * (’e’ + 256 * (’ ’ + 256 * ’k’))

} ;

void salsa20_wr_4(unsigned int out[16],unsigned int k[4],

unsigned int iv[2],unsigned int pos[2])

{

unsigned int in[16];

unsigned int x[16];

int i;

in[0] = tau[0];

in[1] = k[0]; in[2] = k[1]; in[3] = k[2]; in[4] = k[3];

in[5] = tau[1];

in[6] = iv[0]; in[7] = iv[1];

in[8] = pos[0]; in[9] = pos[1];

in[10] = tau[2];

in[11] = k[0]; in[12] = k[1]; in[13] = k[2]; in[14] = k[3];

in[15] = tau[3];

for (i = 0;i < 16;++i) x[i] = in[i];

for (i = rounds;i > 0;i -= 2) {

x[4] = XOR(x[4],ROTATE(PLUS(x[0],x[12]), 7));

x[8] = XOR(x[8],ROTATE(PLUS(x[4],x[0]), 9));

x[12] = XOR(x[12],ROTATE(PLUS(x[8],x[4]),13));

x[0] = XOR(x[0],ROTATE(PLUS(x[12],x[8]),18));

x[9] = XOR(x[9],ROTATE(PLUS(x[5],x[1]), 7));

x[13] = XOR(x[13],ROTATE(PLUS(x[9],x[5]), 9));

x[1] = XOR(x[1],ROTATE(PLUS(x[13],x[9]),13));

x[5] = XOR(x[5],ROTATE(PLUS(x[1],x[13]),18));

x[14] = XOR(x[14],ROTATE(PLUS(x[10],x[6]), 7));

x[2] = XOR(x[2],ROTATE(PLUS(x[14],x[10]), 9));

x[6] = XOR(x[6],ROTATE(PLUS(x[2],x[14]),13));

x[10] = XOR(x[10],ROTATE(PLUS(x[6],x[2]),18));

x[3] = XOR(x[3],ROTATE(PLUS(x[15],x[11]), 7));

x[7] = XOR(x[7],ROTATE(PLUS(x[3],x[15]), 9));

x[11] = XOR(x[11],ROTATE(PLUS(x[7],x[3]),13));

x[15] = XOR(x[15],ROTATE(PLUS(x[11],x[7]),18));

x[1] = XOR(x[1],ROTATE(PLUS(x[0],x[3]), 7));

x[2] = XOR(x[2],ROTATE(PLUS(x[1],x[0]), 9));

x[3] = XOR(x[3],ROTATE(PLUS(x[2],x[1]),13));

x[0] = XOR(x[0],ROTATE(PLUS(x[3],x[2]),18));

x[6] = XOR(x[6],ROTATE(PLUS(x[5],x[4]), 7));

x[7] = XOR(x[7],ROTATE(PLUS(x[6],x[5]), 9));

x[4] = XOR(x[4],ROTATE(PLUS(x[7],x[6]),13));

x[5] = XOR(x[5],ROTATE(PLUS(x[4],x[7]),18));

x[11] = XOR(x[11],ROTATE(PLUS(x[10],x[9]), 7));

x[8] = XOR(x[8],ROTATE(PLUS(x[11],x[10]), 9));

x[9] = XOR(x[9],ROTATE(PLUS(x[8],x[11]),13));

x[10] = XOR(x[10],ROTATE(PLUS(x[9],x[8]),18));

x[12] = XOR(x[12],ROTATE(PLUS(x[15],x[14]), 7));

x[13] = XOR(x[13],ROTATE(PLUS(x[12],x[15]), 9));

x[14] = XOR(x[14],ROTATE(PLUS(x[13],x[12]),13));

x[15] = XOR(x[15],ROTATE(PLUS(x[14],x[13]),18));

}

for (i = 0;i < 16;++i) out[i] = WORD(PLUS(x[i],in[i]));

}

3 The first claimed bias

Given a 16-word block z = (z[0], z[1], . . . , z[15]), define b1(z) ∈ {0, 1} as the xor
of the 9w bits in the 9 words z[0], z[1], z[2], z[4], z[5], z[6], z[8], z[9], z[10].

For each Salsa20-w/r key k, consider the 24w Salsa20-w/r output blocks for
that key, and define B1(k) as the average value of b1(z) for these blocks z.

This section reports computer calculations of B1(k) for many keys k. The
computer calculations show that the deviation of B1(k) from 0.5 is very close
to 0.5/22w, as one would expect for a strong cipher. This section then discusses
An-Ping’s incorrect claims that B1(k) has a much larger deviation from 0.5,
namely 2−(w+1).

Computer calculations

I considered each pair (w, r) with w ∈ {2, 4, 6} and r ∈ {2, 4, 6, 10, 14, 20},
For each (w, r), I used FreeBSD’s /dev/urandom cryptographic random number
generator to create 1000 Salsa20-w/r keys, each having 4w bits. I computed the
exact value of B1(k) for each key k by computing all of the 24w Salsa20-w/r
output blocks for k.

Consider, for example, w = 6 and r = 20, and consider the key k with words
26,3b,21,2c hexadecimal. There are 24w = 16777216 output blocks for this key,
and 8389434 of these blocks z have b1(z) = 1, so B1(k) = 8389434/16777216 =
0.500119388103485107421875. The computer output says

6 bits, 20 rounds: B1(26,3b,21,2c) - 0.5 =

0.0000492334365844727

indicating that B1(k) is approximately 0.5 + 0.0000492334365844727. The only
approximations here are in a floating-point division of 8389434 by 16777216,
and in printing out the resulting floating-point number; the value 8389434 was
calculated exactly, by computation of all 16777216 output blocks. The key is
recorded to allow separate verification of each line.

Then, for each (w, r), I averaged (B1(k) − 0.5)2 for these 1000 keys k, to
estimate the average of (B1(k)−0.5)2 for all keys k, i.e., to estimate the squared
deviation of B1(k) from 0.5. The computer output says, for example,

4 bits, 20 rounds: B1 deviation estimate 2^(-9.004712)

using 1000 keys

indicating that the sum of (B1(k) − 0.5)2 for 1000 Salsa20-4/20 keys k was
approximately 1000 · (2−9.004712)2.

The following table shows the exponent of 2 in this estimate for each (w, r)—
for example, the above exponent −9.004712 for (w, r) = (4, 20):

2 4 6
2 −5.048867 −9.041757 −12.964445
4 −4.975620 −8.998856 −12.971220
6 −5.056969 −8.971984 −12.956509

10 −5.024288 −8.971151 −12.939057
14 −5.074450 −8.988275 −12.964276
20 −5.043388 −9.004712 −12.960415

These experiments demonstrate conclusively, for each pair (w, r) in the table,
that the deviation of B1(k) from 0.5 is close to 0.5/22w. The experiments are
entirely consistent with the hypothesis that the deviation of B1(k) from 0.5 is
extremely close to 0.5/22w for all pairs (w, r).

Computing the w = 4 column of this table took about 238 Athlon-64 cycles:
about 226 cycles for each (r, k). Each addition of 2 to w makes the computation
of B1(k) take 28 times as long. Computing the exact value of B1(k) for a single
k with w = 32 would take about 2138 cycles. For some purposes it is enough
to approximate the value of B1(k): for example, one could confidently compute
B1(k) to within 1/234 in only about 280 cycles.

I’m not going to delay this paper waiting for results for w = 8, and I probably
won’t bother completing the w = 8 computation, but B1(k)− 0.5 is on the scale
of 2−17 = 0.00000762939453125 for all the k’s tested so far for w = 8:

B1(4c,d2,38,3e) − 0.5 = −0.0000071621034294367,

B1(a5,e0,ee,7) − 0.5 = −0.0000095204450190067,

B1(cb,7a,be,56) − 0.5 = 0.0000011851079761982.

What one would expect for a strong cipher

Instead of considering output blocks z from Salsa20-w/r, consider successive
blocks z of a one-time pad. The bits b1(z) are then independent uniform random
bits.

This modification replaces B1(k) with the average α of 24w independent
uniform random bits. The distribution of this average α is close to a normal
distribution around 0.5, with deviation 0.5/22w. In particular, the average of α
is exactly 0.5, and the deviation of α is exactly 0.5/22w.

The same modification replaces 1000 values of B1(k) with 1000 independent
values of α, and thus replaces the average of 1000 squares (B1(k) − 0.5)2 with
the average of 1000 squares (α− 0.5)2. The square root of the latter average has
deviation roughly (0.5/22w)/

√
1000 from 0.5/22w, so it will usually be between

2−(2w+0.95) and 2−(2w+1.05), just like the numbers in the table above.
(Of course, a distribution is not completely characterized by its average and

deviation. I’ve inspected the distribution of B1(k) in more detail and found no
surprises.)

Summary: The distribution of B1(k) for Salsa20-w/r is entirely consistent
with what one would expect for a strong cipher.

The claims of bias

An-Ping defines d(v) for a “binary segment v” as “the XOR over all the bits of
v.” An-Ping defines

z’ = z[0][0]^z[0][1]^z[0][2]

^z[1][0]^z[1][1]^z[1][2]

^z[2][0]^z[2][1]^z[2][2].

where z[i][j] is “the output . . . of Salsa20.” In other words, b1 for a Salsa20
output block is the same as An-Ping’s d(z′).

An-Ping states claims of bias using the following notation: “If v is a variable
over the domain K . . . define δ(v) = (|K| − 2 ∗ ∑

d(v) | v ∈ K)/|K|.” In other
words, as v ranges uniformly over K, the bit d(v) has average value 0.5(1−δ(v)).

An-Ping claims for Salsa20 that “When the secret key is fixed . . . δ(z′) =
1/232.” In other words, An-Ping claims for each key k that the average value of
b1 = d(z′) for all of k’s output blocks is 0.5(1− 1/232). In other words, An-Ping
claims for each key k that B1(k) = 0.5(1 − 1/232). Note that, if this were true,
then the deviation of B1(k) from 0.5 would be exactly 0.5/232.

In the same message, An-Ping claims that the average of b1 for all outputs
for all keys is 0.5(1 − 1/296). This claim contradicts An-Ping’s previous claim:
if B1(k) = 0.5(1 − 1/232) for every k then the overall average must also be
0.5(1 − 1/232).

In a subsequent message, An-Ping makes a considerably weaker claim, namely
that “|δ(z′)| ≥ 1/232.” In other words, An-Ping claims, for each Salsa20 key k,
that |B1(k) − 0.5| ≥ 0.5/232. Note that, if this were true, then the deviation of
B1(k) from 0.5 would be at least 0.5/232.

Apparently An-Ping is claiming, more generally, that |B1(k) − 0.5| ≥ 0.5/2w

for Salsa20-w/r. The word size enters into An-Ping’s “analysis” in only one way:
namely, the xor of all bits of x+y, x, y has variance 0.5/2w when x, y are uniform
random words. An-Ping has not claimed (despite repeated prompting) that w
has any other effect on the claimed bias. As for the number of rounds, there is
no use of the number of rounds in An-Ping’s “analysis,” and in fact An-Ping has
explicitly written “It seems that increasing the number of round will not have
much effection for our analysis.”

Each of An-Ping’s claims implies that the deviation of B1(k) from 0.5 is at
least 0.5/2w. But the computer experiments show conclusively for small values
of w, and strongly suggest for all values of w, that the deviation of B1(k) from
0.5 is very close to 0.5/22w, contradicting An-Ping’s claims.

An-Ping also presents a table titled “The Bias in the Linear Approximating
1, 2” claiming that |B1(k) − 0.5| is on the scale of 2−16 for several test keys k.
This table turns out to be incorrectly labelled, both in its title and in its column
headings. What An-Ping actually computed was an estimate of B1(k) based on
just 230 output blocks. It is completely unsurprising to see deviations on the
scale of 0.5/

√
230 in these estimates. Analogous comments apply in Section 4.

Security claims

After claiming for each key k that B1(k) = 0.5(1 − 1/232), An-Ping claims that
this formula for B1(k) produces a “distinguishing attack . . . for Salsa20 with at
most 264 blocks of keystream.” I agree that, if An-Ping’s formula for B1(k) were
correct, then it would allow a 264-block distinguishing attack with noticeable
success chance; but An-Ping’s formula for B1(k) is not even close to correct.
There is no evidence of any flaw in Salsa20.

After claiming that the average of b1(z) for all output blocks z for all keys is
0.5(1−1/296), An-Ping claims a “distinguishing attack” using “about 2192 blocks
of keystream.” This claim is nonsense. A distinguisher, by definition, tries to tell
the difference between one key and a one-time pad. A Salsa20 key produces
only 2128 output blocks. Apparently An-Ping is confused about the definition of
cipher security.

Analogous remarks apply in Section 4 below.

Software for these calculations

The following program bias1.c computes B1(k) for 1000 keys k:

#include <stdio.h>

#include "salsa20_wr.h"

int streamb1(unsigned int k[4],

unsigned int iv[2],unsigned int pos[2])

{

unsigned int out[16];

unsigned int x;

unsigned int result;

salsa20_wr_4(out,k,iv,pos);

x = out[0] ^ out[1] ^ out[2];

x ^= out[4] ^ out[5] ^ out[6];

x ^= out[8] ^ out[9] ^ out[10];

result = 0;

while (x) {

result ^= x & 1;

x >>= 1;

}

return result;

}

double B1(unsigned int k[4])

{

unsigned int iv[2];

unsigned int pos[2];

long long blocks = 0;

long long b1total = 0;

for (iv[0] = 0;iv[0] <= salsa20_wr_max;++iv[0])

for (iv[1] = 0;iv[1] <= salsa20_wr_max;++iv[1])

for (pos[0] = 0;pos[0] <= salsa20_wr_max;++pos[0])

for (pos[1] = 0;pos[1] <= salsa20_wr_max;++pos[1]) {

++blocks;

b1total += streamb1(k,iv,pos);

}

return b1total / (1.0 * blocks);

}

main(int argc,char **argv)

{

unsigned int k[4];

long long i;

double t;

double sumsq = 0;

long long numkeys;

numkeys = 100;

if (argv[1]) numkeys = atoi(argv[1]);

for (i = 0;i < numkeys;++i) {

k[0] = random32() & salsa20_wr_max;

k[1] = random32() & salsa20_wr_max;

k[2] = random32() & salsa20_wr_max;

k[3] = random32() & salsa20_wr_max;

t = B1(k) - 0.5;

printf("%d bits, %d rounds: "

,salsa20_wr_bits

,salsa20_wr_rounds

);

printf("B1(%x,%x,%x,%x) - 0.5 = %20.19lf\n"

,k[0],k[1],k[2],k[3]

,t

);

fflush(stdout);

sumsq += t * t;

}

printf("%d bits, %d rounds: "

,salsa20_wr_bits

,salsa20_wr_rounds

);

printf("B1 deviation estimate 2^(%lf) using %lld keys\n"

,log(sqrt(sumsq / numkeys)) / log(2)

,numkeys

);

return 0;

}

The random32() function used to generate keys is declared in random32.h:

#ifndef RANDOM32_H

#define RANDOM32_H

extern unsigned int random32(void);

#endif

The implementation, random32.c, takes data from standard input:

#include "random32.h"

unsigned int random32(void)

{

unsigned int result;

result = 255 & getchar();

result *= 256;

result += 255 & getchar();

result *= 256;

result += 255 & getchar();

result *= 256;

result += 255 & getchar();

return result;

}

I used the following shell script to run the computation:

exec 2>&1

CC=’gcc -O3 -march=athlon64’

$CC -c random32.c

for bits in 2 4 6 8 32

do

for r in 2 4 6 8 10 12 14 16 18 20

do

$CC -c salsa20_wr.c -Drounds=$r -Dbits=$bits

mv salsa20_wr.o salsa20_$bits,$r.o

done

done

$CC -c salsa20_wr_test.c

$CC -o salsa20_wr_test salsa20_wr_test.o salsa20_32,20.o

time ./salsa20_wr_test < /dev/urandom

$CC -c bias1.c

$CC -c bias2.c

for bits in 2 4 6 8

do

for r in 20 2 4 10 6 14

do

$CC -o bias1 bias1.o salsa20_$bits,$r.o random32.o -lm

time ./bias1 1000 < /dev/urandom

$CC -o bias2 bias2.o salsa20_$bits,$r.o random32.o -lm

time ./bias2 1000 < /dev/urandom

done

done

The program bias2.c is shown in Section 4. The program salsa20_wr_test.c,
not shown in this paper, checks for consistency between salsa20_wr_4 and the
standard Salsa20 code.

4 The second claimed bias

Given a 16-word block z = (z[0], z[1], . . . , z[15]), define b2(z) ∈ {0, 1} as the xor
of the following bits:

• bit 18 + 18 − 7 of z[0];
• bit 7 + 18 − 7 of z[1];
• bit 9 + 18 − 7 of z[2];
• bits 13 + 18 − 7 and 18 − 7 of z[3];
• bit 7 + 18 − 7 of z[4];
• bit 7 + 7 − 7 of z[5];
• bit 7 + 9 − 7 of z[6];
• bits 7 + 13 − 7 and 7 − 7 of z[7];
• bit 9 + 18 − 7 of z[8];
• bit 7 + 9 − 7 of z[9];
• bit 9 + 9 − 7 of z[10];
• bits 9 + 13 − 7 and 9 − 7 of z[11];
• bits 13 + 18 − 7 and 18 − 7 of z[12];
• bits 7 + 13 − 7 and 7 − 7 of z[13];
• bits 9 + 13 − 7 and 9 − 7 of z[14];
• bits 13 + 13 − 7 and 0 − 7 of z[15].

The numbers 7, 9, 13, 18 appearing in bit positions above are the Salsa20 rotation
distances. As usual, bit positions are interpreted modulo w; for example, bit 0−7
of z[15] is bit 25 of z[15] when w = 32.

For each Salsa20-w/r key k, consider the 24w Salsa20-w/r output blocks for
that key, and define B2(k) as the average value of b2(z) for these blocks z.

This section reports computer calculations of B2(k) for many keys k. The
computer calculations show that the deviation of B2(k) from 0.5 is very close
to 0.5/22w, as one would expect for a strong cipher. This section then discusses
An-Ping’s incorrect claims that B2(k) has a much larger deviation from 0.5.

Computer calculations

I repeated the calculations described in Section 3 but with b2 and B2 in place
of b1 and B1. Here is the resulting table of logs base 2 of estimated deviations
of B2(k) from 0.5:

2 4 6
2 −5.013194 −9.012149 −12.988842
4 −5.080234 −8.984445 −13.016905
6 −5.117803 −8.992286 −12.975413

10 −5.015275 −8.962179 −13.075581
14 −5.041463 −8.987249 −13.038340
20 −4.896893 −9.002967 −12.962563

These experiments demonstrate conclusively, for each pair (w, r) in the table,
that the deviation of B2(k) from 0.5 is close to 0.5/22w. The experiments are
entirely consistent with the hypothesis that the deviation of B2(k) from 0.5 is
extremely close to 0.5/22w for all pairs (w, r).

What one would expect for a strong cipher

Instead of considering output blocks z from Salsa20-w/r, consider successive
blocks z of a one-time pad. The bits b1(z) are then independent uniform random
bits. In particular, as in Section 3, these bits produce table entries with deviation
roughly (0.5/22w)/

√
1000 from 0.5/22w, just like the numbers in the table above.

Summary: The distribution of B2(k) for Salsa20-w/r, like the distribution of
B1(k), is entirely consistent with what one would expect for a strong cipher.

The claims of bias

An-Ping defines, for w = 32,

z0 = z[0][0]{29}^z[0][1]{18}^z[0][2]{20}^z[0][3]{11,24}

^z[1][0]{18}^z[1][1]{7}^z[1][2]{9}^z[1][3]{0,13}

^z[2][0]{20}^z[2][1]{9}^z[2][2]{11}^z[2][3]{2,15}

^z[3][0]{11,24}^z[3][1]{0,13}^z[3][2]{2,15}^z[3][3]{25,19}.

Here z[i][j] is “the output . . . of Salsa20,” as in Section 3; z[a, b]{i} is “the i-th
bit of z[a, b]”; and z[a, b]{i, j} is “the XOR of the i-th bit, j-th bit of z[a, b].” In
other words, b2 for a Salsa20 output block is the same as An-Ping’s d(z0); recall
from Section 3 that An-Ping defines d(v) for a “binary segment v” as “the XOR
over all the bits of v.”

Tracing the origin of the numbers 29, 18, 20, . . . through An-Ping’s paper
reveals that they arise as 18+18−7, 18, 18+9−7, . . ., as shown in my definition
of b2. In particular, the trailing 25 arises as −7 modulo 32.

An-Ping, using the notation δ(v) discussed in Section 3, claims for Salsa20
that “δ(z0) = 1/222.” In other words, An-Ping claims for each key k that the
average value of b2 = d(z0) for all of k’s output blocks is 0.5(1− 1/222). In other
words, An-Ping claims for each key k that B2(k) = 0.5(1− 1/222). Note that, if
this were true, then the deviation of B2(k) from 0.5 would be exactly 0.5/222.

As in Section 3, An-Ping makes a contradictory claim regarding the average
of B2(k), and then makes the weaker claim that B2(k) always has distance at
least 0.5/222 from 0.5. If the weaker claim were true then the deviation from
B2(k) from 0.5 would be at least 0.5/222.

Where does this 22 come from? Answer: An-Ping computes 22 as half of
the sum of 9 − 7 mod 32 = 2, 13 − 7 mod 32 = 6, 18 − 7 mod 32 = 11, and
0 − 7 mod 32 = 25. The corresponding numbers for smaller w are therefore as
follows:

• 1 for w = 2: half the sum of 9−7 mod 2 = 0, 13−7 mod 2 = 0, 18−7 mod 2 =
1, and 0 − 7 mod 2 = 1.

• 4 for w = 4: half the sum of 9−7 mod 4 = 2, 13−7 mod 4 = 2, 18−7 mod 4 =
3, and 0 − 7 mod 4 = 1.

• 6 for w = 6: half the sum of 9−7 mod 6 = 2, 13−7 mod 6 = 0, 18−7 mod 6 =
5, and 0 − 7 mod 6 = 5.

An-Ping’s “analysis” makes no other reference to the word size, and An-Ping
specifically disclaims dependence on the number of rounds. Apparently An-Ping
is claiming a deviation of at least 0.5/21 for Salsa20-2/r; a deviation of at least
0.5/24 for Salsa20-4/r; a deviation of at least 0.5/26 for Salsa20-6/r; etc.

As in Section 3, the computer experiments show conclusively for small values
of w, and strongly suggest for all values of w, that the deviation of B2(k) from
0.5 is very close to 0.5/22w for Salsa20-w/r, contradicting An-Ping’s claims.

Software for these calculations

The following program bias2.c computes B2(k) for 1000 keys k:

#include <stdio.h>

#include "salsa20_wr.h"

int bit(unsigned int x,unsigned int b)

{

b %= salsa20_wr_bits;

b += salsa20_wr_bits;

b %= salsa20_wr_bits;

x >>= b;

x &= 1;

return x;

}

int streamb2(unsigned int k[4],

unsigned int iv[2],unsigned int pos[2])

{

unsigned int out[16];

unsigned int result;

salsa20_wr_4(out,k,iv,pos);

result = bit(out[0],18 + 18 - 7);

result ^= bit(out[1], 7 + 18 - 7);

result ^= bit(out[2], 9 + 18 - 7);

result ^= bit(out[3],13 + 18 - 7);

result ^= bit(out[3], 18 - 7);

result ^= bit(out[4], 7 + 18 - 7);

result ^= bit(out[5], 7 + 7 - 7);

result ^= bit(out[6], 7 + 9 - 7);

result ^= bit(out[7], 7 + 13 - 7);

result ^= bit(out[7], 7 - 7);

result ^= bit(out[8], 9 + 18 - 7);

result ^= bit(out[9], 9 + 7 - 7);

result ^= bit(out[10], 9 + 9 - 7);

result ^= bit(out[11], 9 + 13 - 7);

result ^= bit(out[11], 9 - 7);

result ^= bit(out[12],18 + 13 - 7);

result ^= bit(out[12],18 - 7);

result ^= bit(out[13], 7 + 13 - 7);

result ^= bit(out[13], 7 - 7);

result ^= bit(out[14], 9 + 13 - 7);

result ^= bit(out[14], 9 - 7);

result ^= bit(out[15],13 + 13 - 7);

result ^= bit(out[15], 0 - 7);

return result;

}

double B2(unsigned int k[4])

{

unsigned int iv[2];

unsigned int pos[2];

long long blocks = 0;

long long b1total = 0;

for (iv[0] = 0;iv[0] <= salsa20_wr_max;++iv[0])

for (iv[1] = 0;iv[1] <= salsa20_wr_max;++iv[1])

for (pos[0] = 0;pos[0] <= salsa20_wr_max;++pos[0])

for (pos[1] = 0;pos[1] <= salsa20_wr_max;++pos[1]) {

++blocks;

b1total += streamb2(k,iv,pos);

}

return b1total / (1.0 * blocks);

}

main(int argc,char **argv)

{

unsigned int k[4];

long long i;

double t;

double sumsq = 0;

long long numkeys;

numkeys = 100;

if (argv[1]) numkeys = atoi(argv[1]);

for (i = 0;i < numkeys;++i) {

k[0] = random32() & salsa20_wr_max;

k[1] = random32() & salsa20_wr_max;

k[2] = random32() & salsa20_wr_max;

k[3] = random32() & salsa20_wr_max;

t = B2(k) - 0.5;

printf("%d bits, %d rounds: "

,salsa20_wr_bits

,salsa20_wr_rounds

);

printf("B2(%x,%x,%x,%x) - 0.5 = %20.19lf\n"

,k[0],k[1],k[2],k[3]

,t

);

fflush(stdout);

sumsq += t * t;

}

printf("%d bits, %d rounds: "

,salsa20_wr_bits

,salsa20_wr_rounds

);

printf("B2 deviation estimate 2^(%lf) using %lld keys\n"

,log(sqrt(sumsq / numkeys)) / log(2)

,numkeys

);

return 0;

}

Further generalizations

One can generalize to any set of rotation constants. I’ve already explained how
the rotation constants percolate through An-Ping’s “analysis.”

In particular, replace 7, 9, 13, 18 with 0, 0, 0, 8. An-Ping’s generalized claim
then states a whopping 0.015625 bias for the xor of the following bits: bit 16 of
z[0]; bit 8 of z[1], z[2], z[4], z[8]; and bit 0 of z[5], z[6], z[9], z[10].

I disproved this claim for (w, r) = (32, 20) by trying 1048576 inputs for
one key. The average xor was 0.49957275390625, a completely implausible 30
deviations away from the claimed below-0.484375-or-above-0.515625.

5 Bias calculation for dummies

Salsa20 combines a key, nonce, and block counter into a 16-word array s0. It
makes a simple modification to the array, producing a new 16-word array s1;

makes another simple modification to the array, producing a new 16-word array
s2; and so on.

An-Ping specifies simple functions f0, f1, f2, . . . , fr and considers the bits
f0(s0), f1(s1), f2(s2), . . . , fr(sr). An-Ping uses the following strategy to calculate
the average value of fr(sr):

• Use the simple relationship between si and si+1 to compute the average
value of fi+1(si+1) − fi(si); also compute the average value of f0(s0).

• Combine the average of f0(s0), the average of f1(s1) ⊕ f0(s0), the average
of f2(s2) ⊕ f1(s1), and so on through the average of fr(sr) ⊕ fr−1(sr−1), to
calculate the average value of fr(sr) = f0(s0)⊕ (f1(s1)⊕ f0(s0))⊕ (f2(s2)⊕
f1(s1)) ⊕ · · · ⊕ (fr(sr) ⊕ fr−1(sr−1)).

The point of this section is that the above strategy is fundamentally flawed. To
compute the average of a0 ⊕ a1 ⊕ · · · , one needs much more information than
merely the average of a0, the average of a1, etc.

Consider, for example, a random bit a0 having average 0.6, and another
random bit a1 having average 0.6. (Note to novices: random variables are not
necessarily uniform, and not necessarily independent.) Here are some possibilities
for the average of a0 ⊕ a1:

• 0. Consider a pair (a0, a1) equalling (0, 0) with probability 0.4 and (1, 1) with
probability 0.6.

• 0.48. Consider a pair (a0, a1) equalling (0, 0) with probability 0.16, (0, 1) with
probability 0.24, (1, 0) with probability 0.24, and (1, 1) with probability 0.36.

• 0.5. Consider a pair (a0, a1) equalling (0, 0) with probability 0.15, (0, 1) with
probability 0.25, (1, 0) with probability 0.25, and (1, 1) with probability 0.35.

• 0.8. Consider a pair (a0, a1) equalling (0, 1) with probability 0.4, (1, 0) with
probability 0.4, and (1, 1) with probability 0.2.

Without studying the joint distribution of a0 and a1, one has no basis for guessing
where the average lies between 0 and 0.8. Any particular guess is wrong for two
of the above examples and for many other examples.

An-Ping never analyzes the joint distribution of the bits f0(s0), f1(s1) ⊕
f0(s0), f2(s2) ⊕ f1(s1), etc. An-Ping simply leaps from the claimed averages of
those bits to a claim regarding the average of fr(sr), the xor of those bits. It
doesn’t matter how An-Ping calculates the claimed average of fr(sr) from the
claimed averages of f0(s0), f1(s1)⊕f0(s0), f2(s2)⊕f1(s1), etc.; the entire method
is indefensible, and the final number is nothing more than wild speculation. It
is entirely unsurprising that An-Ping’s claims turned out to be incorrect.

6 Salsa20 for dummies

An-Ping analyzes b1(z), for a Salsa20 output block z, by expressing it as a xor
of various quantities `(a, b) for various intermediate words a, b in the Salsa20
state; and then averaging each `(a, b) separately. This strategy is fundamentally

flawed, as discussed in Section 6, but let’s ignore that for the moment, and look
at the details of the first step.

The point of this section is that An-Ping’s formula for b1(z) is wrong. An-Ping
obtains the formula by xor’ing simple round-by-round formulas; the problem
is that most of those simple formulas are wrong. An-Ping obtains the simple
formulas by applying various row symmetries and column symmetries to a correct
formula; the problem is that Salsa20 does not have those symmetries. A computer
experiment immediately finds many counterexamples to An-Ping’s formula for
b1(z).

An-Ping’s formula for b2(z) is based on exactly the same chain of errors, and
presumably half of all inputs are counterexamples, although I haven’t bothered
with computer experiments in this case.

Understanding quarter rounds

The quarterround function in Salsa20 converts a 4-word array (y0, y1, y2, y3) into
quarterround(y0, y1, y2, y3) = (z0, z1, z2, z3) where

z1 = y1 ⊕ ((y0 + y3) <<< 7),

z2 = y2 ⊕ ((z1 + y0) <<< 9),

z3 = y3 ⊕ ((z2 + z1) <<< 13),

z0 = y0 ⊕ ((z3 + z2) <<< 18).

An-Ping defines d as the xor-all-bits function and correctly observes that

d(z1) = d(y1) ⊕ d(y0 + y3),

d(z2) = d(y2) ⊕ d(z1 + y0),

d(z3) = d(y3) ⊕ d(z2 + z1),

d(z0) = d(y0) ⊕ d(z3 + z2),

since d is invariant under rotations. An-Ping correctly concludes that d(y0) ⊕
d(y1)⊕ d(y2)⊕ d(z0)⊕ d(z1)⊕ d(z2) = `(y0, y3)⊕ `(z1, y0) ⊕ `(z2, z1) ⊕ `(z3, z2)
where `(a, b) = d(a + b) ⊕ d(a) ⊕ d(b).

Understanding row rounds

The rowround function in Salsa20 converts a 16-word array

y =









y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15









into a 16-word array

z =









z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15









by four applications of the quarterround function. For example, (z0, z1, z2, z3) =
quarterround(y0, y1, y2, y3), so d(y0) ⊕ d(y1) ⊕ d(y2) ⊕ d(z0) ⊕ d(z1) ⊕ d(z2) =
`(y0, y3) ⊕ `(z1, y0) ⊕ `(z2, z1) ⊕ `(z3, z2) as discussed above. Let’s call this the
“012 formula.”

Define topleft(y) = y0⊕ y1⊕ y2⊕ y4⊕ y5⊕ y6⊕ y8⊕ y9⊕ y10. An-Ping claims
that d(topleft(y)) ⊕ d(topleft(z)) is the xor of various ` values. It is reasonably
clear (although An-Ping is too careless to state this explicitly) that An-Ping’s
claimed formula was obtained by xoring the 012 formula with a claimed “456
formula” and a claimed “8910 formula.” The latter two formulas were obtained
as follows:

• An-Ping assumes that the second row is handled in the same way as the first
row: (z4, z5, z6, z7) = quarterround(y4, y5, y6, y7). An-Ping deduces the “456
formula” d(y4)⊕d(y5)⊕d(y6)⊕d(z4)⊕d(z5)⊕d(z6) = `(y4, y7)⊕ `(z5, y4)⊕
`(z6, z5) ⊕ `(z7, z6).

• An-Ping assumes that the third row is handled in the same way as the first
row: (z8, z9, z10, z11) = quarterround(y8, y9, y10, y11). An-Ping deduces the
“8910 formula” d(y8)⊕ d(y9)⊕ d(y10)⊕ d(z8)⊕ d(z9)⊕ d(z10) = `(y8, y11)⊕
`(z9, y8) ⊕ `(z10, z9) ⊕ `(z11, z10).

The problem is that An-Ping’s assumptions are false. The second row is not
handled in exactly the same way as the first row; a rotation of the second row is
handled in exactly the same way as the first row. Specifically, the definition of
Salsa20 states that (z5, z6, z7, z4) = quarterround(y5, y6, y7, y4), implying a “567
formula” d(y5) ⊕ d(y6) ⊕ d(y7) ⊕ d(z5) ⊕ d(z6) ⊕ d(z7) = `(y5, y4) ⊕ `(z6, y5) ⊕
`(z7, z6) ⊕ `(z4, z7). An-Ping’s 456 formula is unjustified and, presumably, is
incorrect half the time.

Understanding column rounds

The rowround function in Salsa20 is the transpose of the columnround function:
it converts a 16-word array

x =









x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15









into a 16-word array

y =









y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15









by four applications of the quarterround function to permutations of the columns.
An-Ping claims, as above, that d(topleft(x)) ⊕ d(topleft(y)) is the xor of

various ` values. It is reasonably clear, as above, that this claim was obtained
from a “048 formula,” a claimed “159 formula,” and a claimed “2610 formula,”
Presumably each claim is incorrect half the time.

Understanding all rounds

An-Ping claims that b1(z), for each Salsa20 output block z, is the xor of `(a, b)
for various intermediate words a, b in the Salsa20 state. An-Ping obtains this
claim by combining the above claims regarding d(topleft(x))⊕ d(topleft(y)) and
d(topleft(y))⊕ d(topleft(z)), continuing through all rounds of Salsa20, and then
considering the addition of the initial and final Salsa20 arrays. This claim involves
`(a, b) for 256 pairs (a, b): 12 for each round (4 for each quarter-round times 3
relevant quarter-rounds inside each round) and an extra 16 for the final addition.

I tried Salsa20 for 1000 inputs and found, in 503 cases, that b1(z) failed
to match this xor. In short, An-Ping’s formula for b1(z) is wrong—not just
occasionally but a whopping 50% of the time.

An-Ping appears to state at one point, without explanation, that there are
336 pairs (a, b). This is more than the 256 pairs noted above; 336 pairs means
every pair of words added during the Salsa20 computation, forcing An-Ping to
consider, e.g., y12 ⊕ y13 ⊕ y14. Presumably the discrepancy between 256 and 336
is simply the result of An-Ping’s general sloppiness; but, for thoroughness, I
checked b1(z) against the xor of all 336 values, and found that it failed to match
in 476 out of 1000 cases.

I’m not trying to suggest that, as a general matter, cipher designers are
obliged to perform calculations disproving unjustified cryptanalytic claims. It
was Li An-Ping’s responsibility to split the “analysis” into a series of testable
claims, and to systematically check each claim with the help of a computer. The
absence of computer verification would have been enough reason to reject the
“analysis” even if nobody had pointed out any of An-Ping’s errors.

Can the formulas be repaired?

Suppose that one throws away An-Ping’s incorrect 456 formula, 8910 formula,
etc., and instead starts from the 012 formula, the 567 formula, etc. Can one
combine the correct formulas into an expression for b1(z) as a xor of ` values?

I don’t see any way to do it. Each row-round formula involves some yi that
isn’t cancelled by any column-round formula. One can, for example, write d(y0)⊕
d(y1) ⊕ d(y2) ⊕ d(z0) ⊕ d(z1) ⊕ d(z2) as a xor of ` values, and one can write
d(x5) ⊕ d(x9) ⊕ d(x13) ⊕ d(y5) ⊕ d(y9) ⊕ d(y13) as a xor of ` values, but xor’ing
these formulas leaves d(y1) and d(y9) dangling, and I see no other formulas that
could be used to cancel d(y1) and d(y9).

Of course, one can consider formulas involving quantities other than ` values.
An-Ping attempts to write b1(z) as a xor of ` values solely because “all or
most” of the ` values are noticeably biased. One can trivially achieve “most” by
simply including many constants in the xor; each constant is quite biased, having
deviation 0.5 from 0.5. One can achieve “all” almost as trivially, by writing each
quantity as the xor of two biased quantities. An-Ping’s failure to do this correctly
for Salsa20 does not mean that the task is even marginally difficult; one can easily
write down such formulas for any cipher. Fortunately, as explained in Section 5,
such formulas say nothing about cipher security.

