
Attacking and defending
the McEliece cryptosystem

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. This paper presents several improvements to Stern’s attack
on the McEliece cryptosystem and achieves results considerably better
than Canteaut et al. We show that the system with the originally pro-
posed parameters can be broken on a moderate cluster in about a week.
We have implemented our attack and are carrying it out now.

This paper proposes new parameters for the McEliece and Niederreiter
cryptosystems achieving standard levels of security against all known
attacks. The new parameters take account of our improved attack; the
recent introduction of list decoding for binary Goppa codes; and the pos-
sibility of choosing code lengths that are not a power of 2. We achieve
considerably smaller public key sizes than previous parameter choices for
the same level of security.

Keywords: McEliece cryptosystem, Stern attack, minimal weight code
word, list decoding binary Goppa codes, security analysis.

1 Introduction

The McEliece cryptosystem was proposed by McEliece in 1978 [8] and the
original version, using Goppa codes, remains unbroken. Quantum computers
do not seem to give any significant improvements in attacking code-based sys-
tems, beyond the generic improvements possible with Grover’s algorithm, and
so the McEliece encryption scheme is one of the interesting candidates for post-
quantum cryptography.

A drawback of the system is the comparably large key size – in order to
hide the well-structured and efficiently decodable Goppa code in the public key
the full generator matrix of the scrambled code needs to be published. Various
attempts to reduce the key size by using other codes, most notably codes over
* Permanent ID of this document: 7868533f20f51f8d769be2aa464647c9. Date of this

document: 2008.07.22. This work has been supported in part by the National Science
Foundation under grant ITR–0716498.

2 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

larger fields instead of the subfield codes, have led to several breaks of variants
leaving essentially only the original system as the strongest candidate.

The best known attacks on the system are based on information set decoding
as implemented by Canteaut and Chabaud [2] and analyzed in greater detail by
Canteaut and Sendrier in [3].

In this paper we reconsider attacks on the McEliece cryptosystem and present
improvements to Stern’s attack [12] (an attack predating the Canteaut-Chabaud
one) and demonstrate that our new attack outperforms any previous ones. The
result is that an attack on the originally proposed parameters of the McEliece
cryptosystem is feasible on a moderate cluster. Already Canteaut and Sendrier
had pointed out that the system does not hold up to current security standards
but no actual attack was done before. We have implemented our new method
and expect results soon.

On the defense side our paper proposes new parameters for the McEliece and
Niederreiter cryptosystems, selected from a much wider range of cryptosystem
parameters than have been analyzed before. The new parameters are designed
to minimize public-key size while achieving 80-bit, 128-bit, or 256-bit security
against known attacks—and in particular our attack. (Of course, by a similar
computation, we can find parameters that minimize costs other than key size.)
These new parameters exploit the ability to choose code lengths that are not
powers of 2. They also exploit a list-decoding algorithm for binary Goppa codes
recently introduced by Bernstein; this allows senders to introduce more errors
into ciphertexts, leading to higher security with the same key size, or alterna-
tively the same security with lower key size.

2 Review of the McEliece cryptosystem

McEliece in [8] introduced a public-key cryptosystem based on error-correcting
codes. The public key is a hidden generator matrix of a binary linear code of
length n = 2m and dimension k with error-correcting capability t. McEliece
suggested using classical binary Goppa codes. We will briefly describe the main
properties of these codes before describing the set-up of the cryptosystem.

Notes on linear codes. We fix some notation: We refer to a linear code C of
length n and dimension k as an [n, k] code. The minimum distance d of C is the
smallest Hamming weight of any non-zero element in C.

The generator matrix of an [n, k] code C is the matrix corresponding to the
injective linear map from Fk2 to C ⊂ Fn2 . The parity check matrix of C is an
(n − k) × k-matrix H satisfying GHT = 0. Thus, HcT = 0 for c ∈ Fn2 if and
only if c ∈ C. For y ∈ Fn2 we call HyT the syndrome of y.

Each generator matrix can, after a permutation of columns, be written in
systematic form G = (Ik|Q) where Ik denotes the identity matrix of dimension
k and Q some matrix of dimension k× (n− k). The parity check matrix H of C
is then given by H = (−QT |In−k).

The classical decoding problem is to find the closest codeword x ∈ C to a
given y ∈ Fn2 .

Attacking and defending the McEliece cryptosystem 3

Classical Goppa codes. Fix a finite field F2m and consider a set of n distinct
elements α1, . . . , αn in F2m . Fix an integer t, 2 ≤ t ≤ (2m − 1)/m, and an
irreducible degree-t polynomial g. Note that we do not require n equal to 2m.

The Goppa code Γ = Γ (α1, . . . , αn, g) consists of all elements c = (c1, . . . , cn)
in Fn2 satisfying

n∑
i=1

ci
x− αi

= 0 in F2m [x]/g. (1)

The dimension k of the code Γ is at least n− tm and the minimum distance
is at least 2t+ 1. Patterson in [10] gave an efficient algorithm to correct t errors

Given the irreducible Goppa polynomial g we can construct the parity check
matrix H of the code Γ by taking a closer look at equation (1):

H =

1

g(α1)
. . . 1

g(αn)
α1
g(α1)

. . . αn

g(αn)

...
...

αt−1
1

g(α1)
. . .

αt−1
n

g(αn)

 .

We write elements of F2m as binary strings in {0, 1}m. Considering H over
F2 yields a tm × n binary matrix. We simultaneously consider the McEliece
cryptosystem and a variant published by Niederreiter in [9]. We note that the
original Niederreiter scheme uses Generalized Reed-Solomon codes and was bro-
ken by Sidelnikov and Shestakov in 1992 (see [11]). However, both systems have
equivalent security when using a classical Goppa code with same parameters
n, k, t as shown in [7].

Public keys. Fix a Goppa code Γ with parameters n, k, t. Let G denote the
generator matrix of Γ and H the parity check matrix of Γ , respectively. Choose
an n× n permutation matrix P and a non-singular matrix S of size k × k.

For the McEliece public key set Ĝ = SGP and publish the pair (Ĝ, t).
For the Niederreiter scheme choose a non-singular (n − k) × (n − k)-matrix

S′ instead of S. Set Ĥ = S′HP and publish the pair (Ĥ, t).
McEliece encryption of a message m of length k: Compute mĜ and add some

error vector e of weight t and length n. Send y = mĜ+ e.
Decryption: Compute y′ = yP−1 = m′G + e′ where m′ = mS and e′ is the
permuted error vector e. Use Patterson’s algorithm to find m′ and thereby m =
m′S−1.

Niederreiter encryption of a message m of length n and weight t: Compute
and send y = ĤmT .
Decryption: Compute y′ = S′−1y = HPmT ∈ Fn−k2m which is a syndrome of
some element with respect to H. Apply Patterson’s algorithm to find m′ = PmT

and thereby m.
McEliece’s system does not resist chosen ciphertext attacks (CCA2 security).

For instance, encryption of the same message produces two different ciphertexts
which can be compared to find out the original message since it is highly unlikely
that errors were added in the same positions.

4 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

There are several suggestions to make the system CCA2-secure. An overview
can be found in [4]. All techniques share the idea of scrambling the message
inputs. The aim is to destroy any relations of two dependent messages which an
adversary might be able to exploit.

Further advantages of these techniques reveal themselves when we look at
the key sizes.

Size of public keys. McEliece suggests in his original paper to choose an
[1024, 524] classical binary Goppa code Γ with irreducible polynomial g of degree
t = 50. We consider the same parameters for the Niederreiter system.

Storing the public key: If we take actions to secure the McEliece encryption
towards chosen ciphertext attacks, we can publish G in its systematic form. In
this case it is sufficient to store the k × (n − k)-matrix Q as described above.
Similarly for Niederreiter’s system it suffices to store the non-trivial part of the
parity check matrix.

Storing the private key: the Goppa polynomial g, the matrices P , S and G
(S′ and H for the Niederreiter system) need to be stored.

3 Review of the Stern attack algorithm

The most effective attack known against the McEliece and Niederreiter cryp-
tosystems is “information-set decoding.” There are actually many variants of
this attack. A simple form of the attack was introduced by McEliece in [8, Sec-
tion III]. Subsequent variants were introduced by Leon in [6], by Lee and Brickell
in [5], by Stern in [12], by van Tilburg in [13], by Canteaut and Chabanne in [1],
by Canteaut and Chabaud in [2], and by Canteaut and Sendrier in [3].

The new attack presented in Section 4 of this paper is most easily understood
as a variant of Stern’s attack. This section reviews Stern’s attack.

How to break McEliece and Niederreiter. Leon and Stern actually state
attacks on a different problem, namely the problem of finding a low-weight code-
word. However, as mentioned by Canteaut and Chabaud in [2, page 368], one
can decode a linear code—and thus break the McEliece system—by finding a
low-weight codeword in a slightly larger code.

Specifically, if C is a length-n code over F2, and y ∈ Fn2 has distance w from
a codeword c ∈ C, then y − c is a weight-w element of the code C + {0,y}.
Conversely, if C is a length-n code over F2 with minimum distance larger than
w, then a weight-w element e ∈ C + {0,y} cannot be in C, so it must be in
C + {y}; in other words, y − e is an element of C with distance w from y.

Recall that a McEliece ciphertext y ∈ Fn2 is known to have distance t from
a unique closest codeword c in a code C that has minimum distance at least
2t + 1. The attacker knows the McEliece public key, a generator matrix for C,
and can simply append y to the list of generators to form a generator matrix for
C + {0,y}. The only weight-t codeword in C + {0,y} is y − c; by finding this
codeword the attacker finds c and easily solves for the plaintext.

Attacking and defending the McEliece cryptosystem 5

Similar comments apply if the attacker is given a Niederreiter public key,
i.e., a parity-check matrix for C. By linear algebra the attacker quickly finds a
generator matrix for C; the attacker then proceeds as above. Similar comments
also apply if the attacker is given a Niederreiter ciphertext, i.e., a syndrome.
By linear algebra the attacker finds a word that, when multiplied by the parity-
check matrix, produces the specified syndrome. The bottleneck in all of these
attacks is finding the weight-t codeword in C + {0,y}.

Beware that there is a slight inefficiency in the reduction from the decoding
problem to the problem of finding low-weight codewords: if C has dimension k
and y /∈ C then C+{0,y} has slightly larger dimension, namely k+1. The user of
the low-weight-codeword algorithm knows that the generator y will participate
in the solution, but does not pass this information to the algorithm. In this paper
we focus on the low-weight-codeword problem for simplicity.

How to find low-weight words. Stern’s attack has two inputs: first, an integer
w ≥ 0; second, a non-redundant (n− k)× n parity-check matrix H for an [n, k]
code over F2. Other standard forms of an [n, k] code, such as a k × n generator
matrix, are easily converted to the parity-check form by linear algebra.

Stern randomly selects n−k out of the n columns of H. He selects a random
size-` subset Z of those n−k columns; here ` is an algorithm parameter optimized
later. He partitions the remaining k columns into two sets X and Y by having
each column decide independently and uniformly to join X or to join Y .

Stern then searches, in a way discussed below, for codewords that have exactly
p nonzero bits in X, exactly p nonzero bits in Y , 0 nonzero bits in Z, and exactly
w − 2p nonzero bits in the remaining columns. Here p is another algorithm
parameter optimized later. If there are no such codewords, Stern starts with a
new selection of columns.

The search has three steps. First, Stern applies elementary row operations
to H so that the selected n− k columns become the identity matrix. This fails,
forcing the algorithm to restart, if the original (n− k)× (n− k) submatrix of H
is not invertible. Stern guarantees an invertible submatrix, avoiding the cost of
a restart, by choosing each column adaptively as a result of pivots in previous
columns. (In theory this adaptive choice could bias the choice of (X,Y, Z), as
Stern points out, but the bias does not seem to have a noticeable effect on
performance.)

Second, now that this (n−k)×(n−k) submatrix of H is the identity matrix,
the set Z of ` columns corresponds to ` rows. For every size-p subset A of X,
Stern computes the sum of the columns in A for each of those ` rows, obtaining
an `-bit vector π(A). Similarly, Stern computes π(B) for every size-p subset B
of Y .

Third, for each collision π(A) = π(B), Stern computes the sum of the 2p
columns in A ∪ B. This sum is an (n − k)-bit vector. If the sum has weight
w − 2p, Stern obtains 0 by adding the corresponding w − 2p columns in the
(n − k) × (n − k) submatrix. Those w − 2p columns, together with A and B,
form a codeword of weight w.

6 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

4 The new attack

This section presents our new attack as the culmination of a series of improve-
ments that we have made to Stern’s attack. The reader is assumed to be familiar
with Stern’s algorithm; see the previous section.

As a result of these improvements, our attack speeds are considerably better
than the attack speeds reported by Canteaut, Chabaud, and Sendrier in [2] and
[3]. See the next two sections for concrete results and comparisons.

Reusing existing pivots. Each iteration of Stern’s algorithm selects n − k
columns of the parity-check matrix H and applies row operations—Gaussian
elimination—to reduce those columns to the (n− k)× (n− k) identity matrix.

Any parity-check matrix for the same code will produce the same results here.
In particular, instead of starting from the originally supplied parity-check matrix,
we start from the parity-check matrix produced in the previous iteration—which,
by construction, already has an (n − k) × (n − k) identity submatrix. About
(n−k)2/n of the newly selected columns will match previously selected columns,
and are simply permuted into identity form with minimal effort, leaving real work
for only about n− k − (n− k)2/n = (k/n)(n− k) of the columns.

Stern says that reduction involves “order (1/2)(n − k)3 + k(n − k)2” bit
operations; for example, (3/16)n3 bit operations for k = n/2. To understand
this formula, observe that the first column requires ≤ n − k reductions, each
involving ≤ n − 1 additions; the second column requires ≤ n − k reductions,
each involving ≤ n − 2 additions; and so on through the (n − k)th column,
which requires ≤ n − k reductions, each involving ≤ k additions; for a total of
(1/2)(n− k)3 + (k − 1/2)(n− k)2.

We improve the bit-operation count to k2(n − k)(n − k − 1)(3n − k)/4n2:
for example, (5/128)n2(n − 2) for k = n/2. Part of the improvement is from
eliminating the work for the first (n − k)2/n columns. The other part is the
standard observation that the number of reductions in a typical column is only
about (n− k − 1)/2.

Forcing more existing pivots. More generally, one can artificially reuse ex-
actly n− k − c column selections, and select the remaining c new columns ran-
domly from among the other k columns, where c is a new algorithm parameter.
Then only c columns need to be newly pivoted. Reducing c below (n − k)2/n
saves time correspondingly.

Beware, however, that extremely small values of c require more iterations
before the algorithm finds the desired weight-w word. Changing only a few of
the selected n−k columns will very often preserve the number of errors in those
columns; if the number of errors in the previously selected columns was different
from w − 2p then the number of errors in the newly selected columns is also
likely to be different from w − 2p.

The extreme case c = 1 has appeared before: it was used by Canteaut et al. in
[1, Algorithm 2], [2, Section II.B], and [3, Section 3]. This extreme case minimizes
the time for Gaussian elimination but maximizes the number of iterations of the
entire algorithm.

Attacking and defending the McEliece cryptosystem 7

Illustrative example from the literature: Canteaut and Sendrier report in [3,
Table 2] that they need 9.85·1011 iterations to handle n = 1024, k = 525, w = 50
with their best parameters (p, `) = (2, 18). Stern’s algorithm, with the same
(p, `) = (2, 18), needs only 5.78 ·1011 iterations. Canteaut and Chabaud say that
Gaussian elimination is the “most expensive step” in previous attacks, justifying
the switch to c = 1; our experience, however, is that c = 1 is suboptimal when
the algorithm as a whole is optimized.

Faster pivoting. Kronrod’s algorithm (the “Four Russians Algorithm”) com-
bines several pivots, reducing the number of additions by typically a factor of
three. Full details will appear in the next version of this paper.

Multiple choices of Z. Recall that Stern’s algorithm finds a particular weight-
w word if that word has exactly p, p, 0 errors in the column sets X,Y, Z respec-
tively.

The probability of a weight-w word having exactly 2p errors in a uniform
random selection of k columns is

(
w
2p

)(
n−w
k−2p

)
/
(
n
k

)
. The conditional probability of

the 2p errors splitting as p, p between X,Y is
(
2p
p

)
/22p. The conditional proba-

bility of the remaining w − 2p errors avoiding Z, a uniform random selection of
` out of the remaining n− k columns, is

(
n−k−(w−2p)

`

)
/
(
n−k
`

)
.

We generalize Stern’s algorithm to allow m disjoint sets Z with the same
X,Y ; here m ≥ 1 is another algorithm parameter. The cost of this generalization
is an m-fold increase in the time spent in the second and third steps of the
algorithm—but the first step, the initial Gaussian elimination, depends only on
X,Y and is done only once. The benefit of this generalization is that the chance
of finding any particular weight-w word grows by a factor of nearly m; more
precisely, the conditional probability of w− 2p errors avoiding Z1, Z2, . . . , Zm is

m

(
n−k−(w−2p)

`

)(
n−k
`

) −
(
m

2

)(n−k−(w−2p)
2`

)(
n−k
2`

) +
(
m

3

)(n−k−(w−2p)
3`

)(
n−k
3`

) − · · ·

by the inclusion-exclusion principle.
For example, if (n, k, w) = (1024, 525, 50) and (p, `) = (3, 29), then one set

Z1 works with probability approximately 6.336%, while two disjoint sets Z1, Z2

work with probability approximately 12.338%. Switching from one set to two
produces a 1.947× increase in effectiveness at the expense of replacing steps
1, 2, 3 by steps 1, 2, 3, 2, 3. This is worthwhile if step 1, Gaussian elimination, is
more than about 5% of the original computation.

Reusing additions of the `-bit vectors. The second step of Stern’s algorithm
considers all p-element subsets A of X and all p-element subsets B of Y , and
computes `-bit sums π(A), π(B). Stern says that this takes 2lp

(
k/2
p

)
bit opera-

tions for average-size X,Y . Similarly, Canteaut et al. say that there are
(
k/2
p

)
choices of A and

(
k/2
p

)
choices of B, each using p` bit operations.

We comment that, although computing π(A) means p− 1 additions of `-bit
vectors, usually p− 2 of those additions were carried out before. Simple caching
thus reduces the average cost of computing π(A) to only marginally more than

8 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

` bit operations for each A. This improvement becomes increasingly important
as p grows.

Faster additions after collisions. The third step of Stern’s algorithm, for the
pairs (A,B) with π(A) = π(B), adds all the columns in A ∪B.

We point out that, as above, many of these additions overlap. We further
point out that it is rarely necessary to compute all of the rows of the result:
After computing 2(w − 2p + 1) rows one already has, on average, w − 2p + 1
errors; in general, as soon as the number of errors exceeds w−2p, one can safely
abort this pair (A,B).

5 Attack optimization and comparison

Canteaut, Chabaud, and Sendrier announced ten years ago that the original pa-
rameters for McEliece’s cryptosystem were not acceptably secure: specifically, an
attacker can decode 50 errors in a [1024, 524] code over F2 in 264.1 bit operations.

Choosing parameters p = 3, m = 2, and ` = 27 in our new attack shows that
the same computation can be done in only 261.7 bit operations. Note that we
chose p and ` considerably larger than Canteaut et al.

For each n ∈ 16Z with 128 ≤ n ≤ 8192, for each t ∈ Z between 2 and
2n/(3 dlg ne), we have computed parameters for our new attack that minimize
bit operations for decoding t errors in an [n, n − t dlg ne] code. The following
graphs are for n = 1024, n = 2048, n = 4096, and n = 8192 respectively; the
horizontal axis is t dlg ne /n, and the vertical axis is lg(bit operations).

Attacking and defending the McEliece cryptosystem 9

6 A successful attack on the original McEliece parameters

We have implemented, and are carrying out, an attack against the cryptosys-
tem parameters originally proposed by McEliece. Our attack software extracts a
plaintext from a ciphertext by decoding 50 errors in a [1024, 524] code over F2.

If we were running our attack software on a single computer with a 2.4GHz In-
tel Core 2 Quad Q6600 CPU then we would need, on average, approximately 1400
days (258 CPU cycles) to complete the attack. We are actually running our at-
tack software on more machines. Running the software on 200 such computers—a
moderate-size cluster costing under $200000—would reduce the average time to
one week.

These attack speeds are much faster than the best speeds reported in the
previous literature. Specifically, Canteaut, Chabaud, and Sendrier in [2] and [3]
report implementation results for a 433MHz DEC Alpha CPU and conclude that
one such computer would need approximately 7400000 days (268 CPU cycles):
“decrypting one message out of 10,000 requires 2 months and 14 days with 10
such computers.”

Of course, the dramatic reduction from 7400000 days to 1400 days can be
partially explained by hardware improvements—the Intel Core 2 Quad can per-
form three arithmetic instructions per cycle (compared to two for the Alpha
21164), runs at 5.54× the clock speed, and has four parallel cores. But these
hardware improvements alone would only reduce 7400000 days to 220000 days.

The remaining speedup factor of 150, making the attack feasible for anyone
who owns a few computers, comes from our improvements of the attack itself.
This section discusses the software performance of our attack in detail. Beware
that optimizing CPU cycles is different from, and more difficult than, optimizing
the simplified notion of “bit operations” considered in Section 4.

We plan to publish our attack software to allow public verification of our
speed results and to allow easy reuse of the same techniques in other decoding
problems.

10 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

Number of iterations. Our attack software uses, on average, about 1.8 · 1011

iterations. For comparision, Canteaut et al. report that their attack uses, on
average, 9.85 · 1011 iterations.

There are two major reasons for the reduced iteration count. First, we choose
m = 5: for each selection of column sets X,Y we try five sets Z1, Z2, Z3, Z4, Z5.
Second, we choose c = 32: each iteration replaces 32 columns from the previous
iteration. Compared to the extreme choices m = 1 and c = 1 used in the previous
literature, our choices m = 5 and c = 32 increase various parts of the per-
iteration time by factors of 5 and (almost) 32 respectively; but the choices also
combine to reduce the number of iterations by a factor of about 6.23, down to
1.58 · 1011.

To avoid excessive time spent handling collisions in the main loop, we in-
creased ` from 18 to 20, increasing the number of iterations somewhat.

To double-check our predictions of average iteration counts we have carried
out 100000 experiments decoding 10 errors, 100000 experiments decoding 11
errors, etc. The results—for example, 100000 experiments using 15 errors used
119.86 iterations on average—are consistent with our predictions.

Time for each iteration. Our attack software carries out an attack iteration
in 6.38 million CPU cycles on one core of a busy Core 2 Quad. “Busy” means
that the other three cores of the Core 2 Quad are also working on the attack; the
cycle counts drop slightly, presumably reflecting reduced L2-cache contention, if
only one core of the Core 2 Quad is active.

About 6.20 of these 6.38 million CPU cycles are accounted for by the following
major components:

• 0.68 million CPU cycles to select new column sets X and Y and to perform
Gaussian elimination. We use 32 new columns in each iteration, as mentioned
above. Each new column is handled by an independent pivot, modifying a few
hundred thousand bits of the matrix; we use standard techniques to combine
64 bit modifications into a small number of CPU instructions, reducing the
cost of the pivot to about 20000 CPU cycles. Further improvements are
clearly possible with Kronrod’s algorithm and with further CPU tuning.
• 0.35 million CPU cycles to precompute π(C) for each single column C. There

are m = 5 choices of π, and k = 525 columns C for each π. We handle each
π(C) computation in a naive way, costing more than 100 CPU cycles; this
could be improved but is not a large part of the overall computation.
• 0.36 million CPU cycles to clear hash tables. There are two hash tables, each

with 2` = 220 bits, and clearing both tables costs about 0.07 million CPU
cycles; this is repeated m = 5 times, accounting for the 0.36 million CPU
cycles.
• 1.13 million CPU cycles to mark, for each size-p set A, the bit at position
π(A) in the first hash table. We use p = 2, so there are 262 · 261/2 = 34191
choices of A, and m = 5 choices of π, for a total of 0.17 million marks,
each costing about 6.6 CPU cycles. Probably the 6.6 could be reduced with
further CPU tuning.

Attacking and defending the McEliece cryptosystem 11

• 1.30 million CPU cycles to check, for each set B, whether the bit at position
π(B) is set in the first hash table, and if so to mark the bit at position π(B)
in the second hash table while appending B to a list of colliding B’s.

• 1.35 million CPU cycles to check, for each set A, whether the bit at position
π(A) is set in the second hash table, and if so to append A to a list of
colliding A’s.

• 0.49 million CPU cycles to sort the list of colliding sets A by π(A) and to
sort the list of colliding sets B by π(B). We use a straightforward radix sort.

• 0.54 million CPU cycles to skim through each collision π(A) = π(B), check-
ing the weight of the sum of the columns in A ∪ B. There are on average
about 5 · 34453 · 34191/220 ≈ 5617 collisions. Without early aborts this step
would cost 1.10 million CPU cycles.

For comparision, Canteaut et al. use 260 million cycles on an Alpha 21164
for each of their iterations (“1000 iterations of the optimized algorithm are per-
formed in 10 minutes . . . at 433 MHz”).

7 Defending the McEliece cryptosystem

This section proposes new parameters for the McEliece cryptosystem.

Increasing n. The most obvious way to defend McEliece’s cryptosystem is to
increase n, the length of the code used in the cryptosystem. We comment that n
does not have to be a power of 2, and that allowing values of n between powers
of 2 allows considerably better optimization of (e.g.) the McEliece/Niederreiter
public-key size. See below for examples. Aside from a mild cost in decoding time,
there is no obstacle to the receiver using a field size much larger than n.

Using list decoding to increase w. Bernstein has very recently introduced
a list-decoding algorithm for classical irreducible binary Goppa codes, exactly
the codes used in McEliece’s cryptosystem. This algorithm allows the receiver to
efficiently decode approximately n−

√
n(n− 2t− 2) ≥ t+ 1 errors instead of t

errors. The sender, knowing this, can introduce correspondingly more errors; the
attacker is then faced with a more difficult problem of decoding the additional
errors.

List decoding can, and occasionally does, return more than one codeword
within the specified distance. In CCA2-secure variants of McEliece’s system there
is no difficulty in identifying the valid codeword. Our attack can easily discard
invalid codewords in exactly the same way.

Analysis and optimization of parameters. For (just barely!) 80-bit security
against our best attacks we propose degree-33 length-1616 Goppa codes, with
34 errors added by the sender. The public key size here is 454839 bits.

Without list decoding, and with the traditional restriction n = 2m, the best
possibility is degree-27 length-2048 Goppa codes. The public key here is consid-
erably larger, namely 520047 bits.

12 Daniel J. Bernstein, Tanja Lange, and Christiane Peters

For 128-bit security we propose degree-57 length-2928 Goppa codes, with 58
errors added by the sender. The public key size here is 1534896 bits.

For 256-bit security we propose degree-118 length-6544 Goppa codes, with
120 errors added by the sender. The public key size here is 7685340 bits.

References

1. Anne Canteaut and Hervé Chabanne. A further improvement of the work fac-
tor in an attempt at breaking McEliece’s cryptosystem. In P. Charpin, editor,
EUROCODE 94, 1994.

2. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

3. Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryp-
tosystem. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT, volume 1514 of
Lecture Notes in Computer Science, pages 187–199. Springer, 1998.

4. Daniela Engelbert, Raphael Overbeck, and Arthur Schmidt. A summary of
McEliece-type cryptosystems and their security. Cryptology ePrint Archive: Re-
port 2006/162, 2006.

5. Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In EUROCRYPT, pages 275–280, 1988.

6. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–,
1988.

7. Yuan Xing Li, Robert H. Deng, and Xin mei Wang. On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on
Information Theory, 40(1):271–, 1994.

8. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical report, CA, 1978.

9. Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 15(2):159–
166, 1986.

10. Nicholas J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions
on Information Theory, 21:203–207, 1975.

11. V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on
generalized Reed-Solomon codes. Discrete Math. Appl., 2:439–444, 1992.

12. Jacques Stern. A method for finding codewords of small weight. In Gérard D.
Cohen and Jacques Wolfmann, editors, Coding Theory and Applications, volume
388 of Lecture Notes in Computer Science, pages 106–113. Springer, 1988.

13. Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, CRYPTO, volume 403 of Lecture Notes in Computer Science, pages 119–
131. Springer, 1988.

