
List decoding for binary Goppa codes

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

Abstract

This paper presents a list-decoding algorithm for classical irreducible binary Goppa codes. The
algorithm corrects, in polynomial time, approximately n−

p
n(n− 2t− 2) errors in a length-n

classical irreducible degree-t binary Goppa code. Compared to the best previous polynomial-
time list-decoding algorithms for the same codes, the new algorithm corrects approximately
t2/2n extra errors.

1. Introduction

Patterson (1975) introduced a polynomial-time decoding algorithm that corrects t
errors in a classical irreducible degree-t binary Goppa code.

This paper introduces a considerably more complicated, but still polynomial-time,
list-decoding algorithm for classical irreducible binary Goppa codes. The advantage of
the new algorithm is that it corrects approximately

n−
√
n(n− 2t− 2) ≈ t+ 1 +

(t+ 1)2

2(n− t− 1)

errors in a length-n degree-t code. Typically t is chosen in the ballpark of n/(2 lg n); in
that case the new algorithm corrects approximately t+ 1 + n/(8(lg n)2) errors.

Comparison to previous list-decoding algorithms. A different strategy for decod-
ing a degree-t classical binary Goppa code is to view it as an “alternant code,” i.e., a
subfield code of a degree-t generalized Reed–Solomon code over a larger field. The gener-
alized Reed–Solomon code can be decoded by Berlekamp’s algorithm, or by the famous
algorithm introduced by Guruswami and Sudan (1999).
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Unfortunately, Berlekamp’s algorithm is much less effective than Patterson’s algo-
rithm: it corrects only t/2 errors. The Guruswami–Sudan algorithm corrects approxi-
mately n −

√
n(n− t) > t/2 errors but still does not reach t errors. Guruswami and

Sudan (1999, Section 3.1) point out this limitation of their algorithm (“performance can
only be compared with the designed distance, rather than the actual distance”); they do
not mention how serious this limitation is in the binary-Goppa case, where moving to a
larger field chops the distance in half.

As far as I know, the new algorithm is the first list-decoding algorithm for a useful
class of binary codes, and the first improvement in more than thirty years on the decoding
power of Patterson’s algorithm.

Extra errors by brute force. Another standard way to correct extra errors is to
guess the positions of the extra errors. For example, one can guess e error positions,
flip those e bits, and then apply Patterson’s algorithm to correct t additional errors,
overall correcting t+ e errors. The guess is correct with probability

(
n−e
t

)
/
(
n
t+e

)
, so after(

n
t+e

)
/
(
n−e
t

)
guesses one has a good chance of finding any particular codeword at distance

t + e. One can bring the chance exponentially close to 1 by moderately increasing the
number of guesses.

Although this algorithm involves many repetitions of Patterson’s algorithm, it remains
a polynomial-time algorithm if e is chosen so that

(
n
t+e

)
/
(
n−e
t

)
grows polynomially. In

particular, in the typical case t ∈ Θ(n/lg n), one can decode Θ((lg n)/(lg lgn)) extra
errors in polynomial time.

Similarly, one can guess e error positions, flip those e bits, and then apply this paper’s
new list-decoding algorithm. Compared to Patterson’s original algorithm, this method
decodes
• the same t errors, plus
• approximately n− t−

√
n(n− 2t− 2) extra errors from the new algorithm, plus

• e additional errors from guessing;
and the method remains polynomial-time if e is small. In particular, for t ≈ n/(2 lg n),
this paper’s new list-decoding algorithm adds approximately n/(8 lg n)2 extra errors, and
guessing adds Θ((lg n)/(lg lg n)) extra errors, still in polynomial time.

This paper does not consider notions of efficiency more precise than “polynomial
time”; in particular, it does not discuss the number of errors correctable in time n1+o(1),
the number of errors correctable in time n2+o(1), etc. The algorithms in this paper were
chosen to be as simple as possible, subject to the constraint of running in polynomial
time for the desired number of errors.

An application to code-based cryptography. McEliece (1978) proposed a public-
key encryption system using exactly the same codes considered in this paper. The public
key is a generator matrix (or, as proposed by Niederreiter (1986), a parity-check matrix)
of a code equivalent to a classical irreducible degree-t binary Goppa code chosen secretly
by the receiver. The sender encodes a message and adds t errors; the receiver decodes
the errors.

Adding more errors makes McEliece’s system harder to break by all known attacks,
but also requires the receiver to decode the additional errors, posing exactly the problem
tackled in this paper: exactly how many errors can be efficiently decoded in a classi-
cal irreducible binary Goppa code? See (Bernstein, Lange, and Peters 2008) for further
discussion and security analysis.
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Several code-based cryptosystems have been proposed using codes over fields larger
than F2—for example, generalized Reed–Solomon codes. Unfortunately, these variants
seem considerably less secure than McEliece’s original system. See, e.g., (Sidelnikov and
Shestakov 1992). One could also switch to a different class of codes over F2, but I am
not aware of codes over F2 that allow efficient decoding of more errors!

2. Review of classical irreducible binary Goppa codes

This section reviews three equivalent definitions of the classical irreducible binary
Goppa code Γ(a1, . . . , an, g): the “polynomial” definition, the “classical” definition, and
the “evaluation” definition.

The notations m, t, n, a1, . . . , an, g, h,Γ in this section will be reused in Sections 3, 4,
and 7.

Parameters for the code. Fix an integer m ≥ 3. Typically m ∈ {10, 11, 12} in the
cryptographic applications mentioned in Section 1.

Fix an integer t with 2 ≤ t ≤ (2m − 1)/m. The Goppa code will be a “degree-t code”
designed to correct t errors. Extremely small and extremely large values of t are not
useful, but intermediate values of t produce interesting codes; for m = 11 one could
reasonably take (e.g.) t = 32, or t = 70, or t = 100.

Fix an integer n with mt + 1 ≤ n ≤ 2m. It is common to restrict attention to the
extreme case n = 2m; e.g., n = 2048 if m = 11. However, a wider range of n allows a bet-
ter security/efficiency tradeoff for code-based cryptography, as illustrated in (Bernstein,
Lange, and Peters 2008, Section 7).

Fix a sequence a1, . . . , an of distinct elements of the finite field F2m . Typically n = 2m

and a1, . . . , an are chosen as all the elements of F2m in lexicographic order, given a
standard basis for F2m over F2. For n < 2m there is more flexibility.

Finally, fix a monic degree-t irreducible polynomial g ∈ F2m [x]. There are no standard
choices here; in the classic study of minimum distance it is an open problem to find the
best g, and in code-based cryptography it is important for g to be a randomly chosen
secret.

The “polynomial” view of the code. Define h =
∏
i(x−ai) ∈ F2m [x]. In the extreme

case n = 2m, this polynomial h is simply xn − x, with derivative h′ = nxn−1 − 1 = 1,
slightly simplifying some of the formulas below.

Define

Γ = Γ(a1, . . . , an, g) =

{
c ∈ Fn2 :

∑
i

ci
h

x− ai
mod g = 0

}
.

This set Γ is the kernel of the “syndrome” map Fn2 → Ft2m that maps c to the coefficients
of 1, x, . . . , xt−1 in

∑
i cih/(x− ai) mod g; consequently Γ is an F2-module of dimension

at least n−mt, i.e., an [n,≥ n−mt] code over F2.
In other words: The polynomials h/(x − a1) mod g, h/(x − a2) mod g, . . . , h/(x −

an) mod g, viewed as vectors over F2, form a parity-check matrix for the code Γ.

The “classical” view of the code. By construction g has degree t ≥ 2, and has none
of a1, . . . , an as roots. Therefore h is coprime to g.

Consequently the polynomial
∑
i cih/(x− ai) in F2m [x] is a multiple of g if and only

if
∑
i ci/(x − ai) equals 0 in the field F2m [x]/g. The classical Goppa code associated to
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a1, . . . , an, g is most commonly defined as the set of c ∈ Fn2 such that
∑
i ci/(x− ai) = 0

in F2m [x]/g; this is the same code as Γ.
Another consequence of the coprimality of h and g is that the minimum distance

of C is at least 2t + 1; i.e., C is an [n,≥ n − mt,≥ 2t + 1] code over F2. Proof: If
c ∈ Γ− {0} then g divides the polynomial

∑
i cih/(x− ai) =

∑
i:ci=1 h/(x− ai) = hε′/ε

where ε =
∏
i:ci=1(x−ai). Thus g divides ε′. Write ε as α2 +xβ2, and observe that β 6= 0,

since by construction ε is not a square. Now ε′ = β2, so g divides β2; but g is irreducible,
so g divides β, so β has degree at least t, so ε has degree at least 2t+ 1.

The “evaluation” view of the code. Define

C =

{
c ∈ Fn2m :

∑
i

ci
h

x− ai
mod g = 0

}
.

This set C is an [n, n− t] code over F2m . The classical binary Goppa code Γ is a subfield
code of C.

If f is a polynomial in F2m [x] with deg f < n− t then the vector

(f(a1)g(a1)/h′(a1), f(a2)g(a2)/h′(a2), ..., f(an)g(an)/h′(an))

is in C. Indeed,
∑
i(f(ai)g(ai)/h′(ai))h/(x − ai) = fg by Lagrange interpolation, and

fg mod g = 0. Conversely, every element of C can be written as a vector of this form: if∑
i cih/(x− ai) ∈ F2m [x] is a multiple of g, say fg, then f(ai)g(ai) = cih

′(ai) so

c = (f(a1)g(a1)/h′(a1), f(a2)g(a2)/h′(a2), ..., f(an)g(an)/h′(an)).

Therefore C is a geometric Goppa code, specifically a genus-0 geometric Goppa code,
specifically a geometric Goppa code over the projective line.

3. Review of Patterson’s algorithm

This section reviews Patterson’s algorithm for correcting t (or fewer) errors in the
classical irreducible binary Goppa code Γ = Γ(a1, . . . , an, g) defined in Section 2.

The algorithm. The input to the algorithm is a vector w ∈ Fn2 . The output is a list of
all codewords c ∈ Γ such that the Hamming distance |c−w| = #{i : ci 6= wi} is at most
t. There is at most one such codeword—recall that the minimum distance of Γ is at least
2t+ 1.

Define the norm |ϕ| of a polynomial ϕ ∈ F2m [x] as 2degϕ if ϕ 6= 0 and 0 if ϕ = 0.
Extend the norm multiplicatively to rational functions ϕ ∈ F2m(x): the norm |ϕ/ψ| is
|ϕ|/|ψ|. For example, |x3/(x5 + x+ 1)| = |x3|/|x5 + x+ 1| = 23/25 = 2−2.

Compute the square root of (1/
∑
i wi/(x− ai))− x in the field F2m [x]/g. This com-

putation fails if
∑
i wi/(x− ai) is zero in the field; if so, output w and stop.

Lift the square root to a polynomial s ∈ F2m [x] of degree < t. Apply lattice-basis
reduction to the lattice L ⊆ F2m [x]2 generated by the vectors (s, 1) and (g, 0), obtaining
a minimum-length nonzero vector (α0, β0). Here the length |(α, β)| of a vector (α, β) ∈
F2m [x]2 is, by definition, the norm of the polynomial α2 + xβ2.

Compute ε0 = α2
0 + xβ2

0 . Use a polynomial-factorization algorithm to see whether the
monic part of ε0 (i.e., ε0 divided by its leading coefficient) splits into distinct linear factors
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of the form x− ai. If it does, output the unique vector c ∈ Fn2 such that {i : wi 6= ci} =
{i : ε0(ai) = 0}.

Why the algorithm works. If the algorithm outputs w in the first step then
∑
i wi/(x−

ai) = 0 in the field F2m [x]/g so w ∈ Γ. Conversely, if w ∈ Γ then the algorithm correctly
outputs w in the first step. Note that in this case there are no other codewords at distance
≤ 2t.

Assume from now on that w /∈ Γ. Then
∑
i wi/(x− ai) 6= 0 in F2m [x]/g.

The specified basis (s, 1), (g, 0) of L has orthogonalization (0, 1), (g, 0), with lengths
|(0, 1)| = |x| = 21 and (g, 0) = |g2| = 22t, product 22t+1. Consequently |(α0, β0)| ≤
2(2t+1)/2 = 2t+1/2; i.e., deg ε0 ≤ t+ 1/2; i.e., deg ε0 ≤ t.

Furthermore, the lattice L is exactly the set of vectors (α, β) ∈ F2m [x]2 such that α−sβ
is a multiple of g. Consequently any (α, β) ∈ L satisfies α2/β2 = s2 = (1/

∑
i wi/(x −

ai))− x in the field F2m [x]/g, if β is not a multiple of g. The polynomial ε = α2 + xβ2 ∈
F2m [x] satisfies ε′ = β2, so ε/ε′ = α2/β2 + x = 1/

∑
i wi/(x− ai) in the field F2m [x]/g.

If the algorithm outputs a vector c then the monic part of ε0 splits into linear factors, so
ε0 is not a square, so α2

0+xβ2
0 is not a square, so β0 6= 0; but deg β0 ≤ (t−1)/2 < t = deg g,

so β0 is not a multiple of g, so ε0/ε
′
0 = 1/

∑
i wi/(x − ai) in the field F2m [x]/g. Thus∑

i wi/(x − ai) = ε′0/ε0 =
∑
i:ε0(ai)=0 1/(x − ai) =

∑
i:wi 6=ci

1/(x − ai) =
∑
i(wi −

ci)/(x−ai) =
∑
i wi/(x−ai)−

∑
i ci/(x−ai) in the field F2m [x]/g. Subtract to see that∑

i ci/(x− ai) = 0 in the field F2m [x]/g, i.e., that c ∈ Γ. The Hamming distance |w − c|
is exactly #{i : ε0(ai) = 0} = deg ε0 ≤ t. Summary: The output of the algorithm is a
codeword at distance ≤ t from w.

Conversely, assume that c ∈ Γ has |w − c| ≤ t. Define ε =
∏
i:wi 6=ci

(x− ai) ∈ F2m [x],
and write ε in the form α2+xβ2. Then

∑
i ci/(x−ai) = 0 in F2m [x]/g, so

∑
i wi/(x−ai) =∑

i(wi − ci)/(x− ai) =
∑
i:wi 6=ci

1/(x− ai) = ε′/ε in F2m [x]/g, so s2 = ε/ε′ − x = α2/β2

in F2m [x]/g. Squaring in the field F2m [x]/g is injective, so s = α/β in F2m [x]/g, so α−sβ
is a multiple of g in F2m [x]; i.e., (α, β) ∈ L. Furthermore deg ε ≤ t so |(α, β)| ≤ 2t so
|(α, β)||(α0, β0)| ≤ 22t. Every basis of L has product of lengths at least |(0, 1)||(g, 0)| ≥
22t+1, so (α, β), (α0, β0) are not a basis; i.e., (α, β) is parallel to (α0, β0); but (α0, β0) has
minimum length in L, so (α, β) is a multiple of (α0, β0), say q(α0, β0) where q ∈ F2m [x].
Now ε = α2 + xβ2 = q2(α2

0 + xβ2
0) = q2ε0. By construction ε is squarefree so ε/ε0 is a

constant. Hence the monic part of ε0 splits into exactly the distinct linear factors x− ai
that divide ε, and the algorithm finds exactly the codeword c.

Numerical example. Define m = 8, n = 2m = 256, and t = 22. Construct F2m as
F2[ζ]/(ζ8 + ζ4 + ζ3 + ζ2 + 1). Define a1 = ζ, a2 = ζ2, and so on through a255 = ζ255 = 1;
define a256 = 0. Choose g = x22 + x17 + x15 + x12 + x5 + ζ78 ∈ F2m [x]; one can easily
check that g is irreducible.

Now the Goppa code Γ is a [256,≥ 80,≥ 45] code over F2. I generated a random
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element of Γ and added 22 random errors to it, obtaining the word

w = (0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,
0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0)

in Fn2 . Here is what Patterson’s algorithm does with this word w.
The sum

∑
i wi/(x−ai) in the field F2m [x]/g is 1/(x−a2)+1/(x−a3)+1/(x−a6)+· · · =

1/(x−ζ2)+1/(x−ζ3)+1/(x−ζ6)+ · · · = ζ64 +ζ110x+ζ204x2 +ζ53x3 +ζ91x4 +ζ200x5 +
ζ147x6+ζ67x7+ζ196x8+ζ253x9+ζ235x10+ζ161x11+ζ92x12+ζ146x13+ζ125x14+ζ141x15+
ζ9x16 + ζ34x17 + ζ15x18 + ζ139x19 + ζ229x20 + ζ68x21. Invert, subtract x, and compute
a square root, namely ζ200 + ζ46x + ζ51x2 + ζ91x3 + ζ232x4 + ζ12x5 + ζ179x6 + ζ3x7 +
ζ146x8 +ζ93x9 +ζ130x10 +ζ92x11 +ζ28x12 +ζ219x13 +ζ96x14 +ζ114x15 +ζ131x16 +ζ61x17 +
ζ251x18 + ζ76x19 + ζ237x20 + ζ40x21. Define s as this polynomial in F2m [x].

The vector (g, 0) has degree (22, 0) and therefore length 244. The vector (s, 1) has
degree (21, 0) and therefore length 242. The quotient bg/sc is ζ−40x− ζ237−80 = ζ215x−
ζ157; the difference (g, 0) − bg/sc(s, 1) is the vector (g mod s, ζ215x − ζ157), which has
degree (20, 1) and therefore length 240. Continued reduction eventually produces the
vector (α0, β0) where α0 = ζ181 + ζ216x + ζ219x2 + ζ188x3 + ζ69x4 + ζ126x5 + ζ145x6 +
ζ233x7 + ζ243x8 + ζ31x9 + ζ182x10 + x11 and β0 = ζ105 + ζ50x+ ζ5x2 + ζ116x3 + ζ150x4 +
ζ123x5 + ζ7x6 + ζ224x7 + ζ220x8 + ζ84x9 + ζ150x10; this vector has degree (11, 10) and
therefore length 222 ≤ 2t.

The polynomial ε0 = α2
0 + xβ2

0 splits into 22 linear factors, namely x − ζ7, x − ζ25,
x− ζ51, x− ζ60, x− ζ68, x− ζ85, x− ζ126, x− ζ135, x− ζ136, x− ζ138, x− ζ155, x− ζ167,
x − ζ168, x − ζ172, x − ζ173, x − ζ189, x − ζ191, x − ζ209, x − ζ212, x − ζ214, x − ζ234,
x−ζ252. Consequently w has distance 22 from the codeword c ∈ Γ obtained by correcting
positions 7, 25, 51, etc.

4. Extracting more information from Patterson’s algorithm

If Patterson’s algorithm is given a word w at distance more than t from the closest
codeword—in other words, if the error polynomial ε has degree larger than t—then the
algorithm’s output is empty. However, a closer look at the same calculations reveals more
information about ε. This section presents an easy extension of Patterson’s algorithm,
identifying two polynomials ε0, ε1 such that ε is a small linear combination of ε0, ε1.

The algorithm. The input, as before, is a vector w ∈ Fn2 . Assume that w /∈ Γ.
Compute the square root of (1/

∑
i wi/(x − ai)) − x in the field F2m [x]/g, and lift it

to a polynomial s ∈ F2m [x] of degree below t.
Apply lattice-basis reduction to the lattice L ⊆ F2m [x]2 generated by the vectors (s, 1)

and (g, 0), obtaining a minimum-length nonzero vector (α0, β0) and a minimum-length
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independent vector (α1, β1). Here the length |(α, β)| of a vector (α, β) ∈ F2m [x]2 is, as
before, the norm of the polynomial α2 + xβ2.

Compute ε0 = α2
0 + xβ2

0 and ε1 = α2
1 + xβ2

1 . Output (ε0, ε1).

What the algorithm accomplishes. Reduction guarantees that |(α0, β0)| ≤ 2(2t+1)/2

and that |(α0, β0)||(α1, β1)| = 22t+1. Thus deg ε0 ≤ t, as in Section 3, and deg ε0+deg ε1 =
2t+ 1.

Fix c ∈ Γ. Define ε =
∏
i:wi 6=ci

(x − ai) ∈ F2m [x], and write ε in the form α2 + xβ2.
Then (α, β) ∈ L, exactly as in Section 3, so (α, β) can be written as q0(α0, β0)+q1(α1, β1)
for some polynomials q0, q1. Consequently ε = q20ε0 + q21ε1.

The explicit formulas q0 = (αβ1−βα1)/g and q1 = (αβ0−βα0)/g show that q0 and q1
are very small if ε is small. Specifically, fix an integer u ≥ 0, and assume that deg ε ≤ t+u;
also write t0 = deg ε0, and note that deg ε1 = 2t+ 1− t0. Then degα0 ≤ bt0/2c, deg β0 ≤
b(t0 − 1)/2c, degα1 ≤ b(2t+ 1− t0)/2c, deg β1 ≤ b(2t− t0)/2c, degα ≤ b(t+ u)/2c,
and deg β ≤ b(t+ u− 1)/2c, so deg q0 ≤ b(t+ u+ 2t− t0)/2c − t = b(t+ u− t0)/2c and
deg q1 ≤ b(t+ u+ t0 − 1)/2c − t = b(t0 + u− t− 1)/2c.

Using the results of the algorithm. In the simplest case u = 0 (i.e., deg ε ≤ t),
the degree of q1 is at most b(t0 − t− 1)/2c ≤ b−1/2c < 0, so q1 = 0, so ε = q20ε0.
Evidently constant multiples of ε0 are the only possible squarefree choices for ε, and one
can simply check whether the monic part of ε0 splits into linear factors. This is exactly
what Patterson’s algorithm does.

However, for larger u, both q0 and q1 can be nonzero, and it is not so easy to see which
choices for ε are possible. There are ≈ 2mu coprime polynomial pairs (q0, q1) matching
the degree bounds; enumerating all of those pairs is practical for a tiny fixed u, such as
u = 1, but becomes intolerably slow as u increases.

The main point of this paper is an asymptotically much faster algorithm to pin down
the possibilities for ε. See Section 7.

Refinement: gcd{ε1, h} = 1. There are many choices of ε1: one can adjust (α1, β1),
without changing its length, by adding small multiples of (α0, β0) to it. In particular, for
any r ∈ F2m , one can replace (α1, β1) by (α1, β1) +

√
r(α0, β0), replacing ε1 by ε1 + rε0.

It will be convenient later to choose ε1 coprime to h. In practice it seems that, by
trying several r ∈ F2m , one easily finds r such that ε1 +rε0 is coprime to h; consequently,
replacing ε1 with ε1 + rε0, one obtains ε1 coprime to h.

Can it be proven that this is always possible? Here are some remarks on this topic. I
am indebted to Tanja Lange for related discussions, and for helpful comments on other
parts of this paper.

If ε1 + r1ε0 and ε1 + r2ε0, with r1 6= r2, have a common root s, then s is also a root of
((ε1 + r1ε0)− (ε1 + r2ε0))/(r1− r2) = ε0 and (r2(ε1 + r1ε0)− r1(ε1 + r2ε0))/(r2− r1) = ε1,
so s is a root of (ε0ε1)′ = g2, contradicting the irreducibility of g. Consequently each
s ∈ F2m [x] is a root of ε1 + rε0 for at most one r ∈ F2m [x].

Suppose that, for each r ∈ F2m [x], there is a root s ∈ F2m [x] of ε1 + rε0. Counting
then shows that each ε1 + rε0 has exactly one root s, and that each s is a root of exactly
one ε1 + rε0. In particular, if n < 2m, then there exists an s ∈ F2m [x] that is not a root
of h, and the corresponding ε1 + rε0 is coprime to h as desired. The only remaining case
is n = 2m.

Fix s, and find the unique r such that s is a root of ε1 + rε0. Then ε1(s) = rε0(s).
Furthermore ε0(s) 6= 0: otherwise ε1(s) = 0, contradicting the irreducibility of g as above.
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Consequently ε1(s)/ε0(s) = r. Therefore the rational function ε1/ε0, applied to F2m , is
a “permutation function”: it takes each value in F2m exactly once.

Note that a uniform random function F2m → F2m has probability only about exp(−2m)
of being a permutation function: for example, probability about 2−369 for m = 8. One
does not expect to bump into a permutation function by chance! But this heuristic is not
a proof. Some simple rational functions—including all linear functions, squares of linear
functions, etc.—are permutation functions on F2m . Is there any reason that ε1/ε0 cannot
be a permutation function?

Define ϕ = (ε0(x)ε1(y)−ε1(x)ε0(y))/(x−y) ∈ F2m [x, y]. If s1 6= s2 then ε1(s1)/ε0(s1) 6=
ε1(s2)/ε0(s2) so ϕ(s1, s2) 6= 0. Furthermore ϕ(x, x) = ε0ε

′
1−ε1ε′0 = (ε0ε1)′ = g2; therefore

ϕ(s, s) 6= 0 for each s ∈ F2m [x, y]. Thus there are no roots of ϕ with coordinates in F2m .
In other words, the curve ϕ has no points over F2m .

The Hasse–Weil bounds imply, however, that a nonconstant curve of small degree
must have points, producing a contradiction if t is small enough. Perhaps one can handle
a larger range of t with refined bounds that take account of the special shape of ϕ; for
relevant genus information see, e.g., (Avanzi 2001, Theorem 1.3.5).

To summarize: There might exist pairs (ε0, ε1) where ε1 cannot be adjusted to be
coprime to h. However, one expects that such pairs do not occur by chance. Furthermore,
no such pairs exist if n < 2m, and no such pairs exist if t is small.

Numerical example. As in Section 3, define m = 8, n = 2m = 256, and t = 22;
construct F2m as F2[ζ]/(ζ8 + ζ4 + ζ3 + ζ2 + 1); define a1 = ζ, a2 = ζ2, and so on through
a255 = ζ255 = 1; define a256 = 0; and choose g = x22 +x17 +x15 +x12 +x5 +ζ78 ∈ F2m [x].

I generated a random element of the Goppa code Γ and added 24 random errors to it,
obtaining the word

w = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,
1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0).

Given this word, Patterson’s algorithm computes s = ζ51 + ζ119x+ ζ64x2 + ζ230x3 +
ζ9x4 + ζ30x5 + ζ187x6 + ζ226x7 + ζ55x8 + ζ84x9 + ζ80x10 + ζ72x11 + ζ71x12 + ζ152x13 +
ζ220x14 +ζ221x15 +ζ224x16 +ζ154x17 +ζ166x18 +ζ130x19 +ζ225x20 +ζ11x21. Reducing the
basis (s, 1), (g, 0) produces a minimum-length nonzero vector (α0, β0) and a minimum-
length independent vector (α1, β1); here α0 = ζ52 + ζ27x + ζ89x2 + ζ58x3 + ζ140x4 +
ζ139x5 + ζ86x6 + ζ247x7 + ζ245x8 + ζ181x9 + ζ85x10 + ζ37x11, β0 = ζ26 + ζ203x+ ζ175x2 +
ζ130x3 + ζ122x4 + ζ168x5 + ζ168x6 + ζ95x7 + ζ154x8 + ζ114x9 + ζ202x10, α1 = ζ124 +
ζ115x + ζ194x2 + ζ127x3 + ζ175x4 + ζ84x5 + ζ167x6 + ζ119x7 + ζ55x8 + ζ145x9 + ζ204x10,
and β1 = ζ221 + ζ32x + ζ113x2 + ζ118x3 + ζ162x4 + ζ93x5 + ζ110x6 + ζ178x7 + ζ67x8 +
ζ140x9 + ζ11x10 + ζ218x11.

At this point Patterson’s algorithm would hope for ε0 = α2
0 + xβ2

0 to divide h, but
there is no such luck; there are no codewords c ∈ Γ with |w − c| ≤ 22.
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The polynomial α2
1 + xβ2

1 has roots, as does the polynomial α2
1 + xβ2

1 + ε0, but the
polynomial ε1 = α2

1 + xβ2
1 + ζε0 has no roots; i.e., gcd{ε1, h} = 1. This paper’s extension

of Patterson’s algorithm outputs (ε0, ε1).
Out of curiosity I checked all 256 possibilities for r ∈ F2m , and found that a uniform

random choice of r has gcd
{
α2

1 + xβ2
1 + rε0, h

}
= 1 with probability 91/256 ≈ exp(−1).

In retrospect it is not surprising that a few tries sufficed to find a successful value of r.

5. Review of divisors in arithmetic progressions

Consider the problem of finding all divisors of n congruent to u modulo v, where u, v, n
are positive integers with gcd{v, n} = 1. (What does this have to do with list decoding?
Bear with me.)

There is no difficulty if v ≥ n1/2. Lenstra (1984) published a polynomial-time algo-
rithm for v ≥ n1/3. Konyagin and Pomerance (1997) published a polynomial-time algo-
rithm for v ≥ n3/10. Coppersmith, Howgrave-Graham, and Nagaraj found a polynomial-
time algorithm for v ≥ nα

2
for any fixed α > 1/2; see (Howgrave-Graham 1998, Section

5.5) and (Coppersmith, Howgrave-Graham, and Nagaraj 2004). (Lenstra subsequently
pointed out that one could handle α = 1/2, but this extra refinement is not relevant
here.) More generally, the Coppersmith–Howgrave-Graham–Nagaraj algorithm finds all
divisors of n in an arithmetic progression u−Hv, u− (H−1)v, . . . , u−v, u, u+v, . . . , u+
(H − 1)v, u+Hv. The algorithm is polynomial-time if the smallest entry u− vH is n1/α

and the number 2H + 1 of entries is smaller than approximately n1/α2
.

The algorithm actually does more: it finds all small integers s such that the fraction
(s+w)/n has small denominator. Here w is the quotient of u by v modulo n. Note that
(s+ w)/n has denominator at most n/(u+ sv) if u+ sv divides n: indeed, (s+ w)/n =
v̄(u+ sv)/n+ (w − uv̄)/n+ s(1− vv̄)/n, where v̄ is the reciprocal of v modulo n.

Boneh later pointed out—see (Boneh 2000)—that the same algorithm can be viewed
as a state-of-the-art list-decoding algorithm for “CRT codes” under a standard weighted
distance. Take n to be a product of many small primes p1, p2, . . ., and consider codewords
(s mod p1, s mod p2, . . .) where s ∈ {−H, . . . , 0, 1, . . . ,H}. A word (w mod p1, w mod
p2, . . .) is close to a codeword (s mod p1, s mod p2, . . .) if and only if s − w has a large
factor in common with n, i.e., (s− w)/n has small denominator.

The algorithm. Fix positive integers `, k with ` > k. Define L ⊂ Q[z] as the `-
dimensional lattice generated by the polynomials

1,
Hz + w

n
,

(
Hz + w

n

)2

, . . . ,

(
Hz + w

n

)k
,

Hz

(
Hz + w

n

)k
, (Hz)2

(
Hz + w

n

)k
, . . . , (Hz)`−k−1

(
Hz + w

n

)k
.

The Coppersmith–Howgrave-Graham–Nagaraj algorithm uses lattice-basis reduction to
find a nonzero vector ϕ ∈ L with small coefficients. It then finds the desired integers s
by finding rational roots s/H of ϕ.

Specifically, L has determinant H`(`−1)/2/n`k−k(k+1)/2, so the well-known LLL lattice-
basis-reduction algorithm finds ϕ with norm at most (2H)(`−1)/2/nk−k(k+1)/2`. If |s/H| ≤
1 then ϕ(s/H) ≤

√
`(2H)(`−1)/2/nk−k(k+1)/2`; but ϕ(s/H) is also a multiple of 1/Dk
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where D is the denominator of (s + w)/n. In particular, ϕ(s/H) must be 0 if 1/Dk >√
`(2H)(`−1)/2/nk−k(k+1)/2`.
The algorithm thus finds all integers s ∈ {−H, . . . ,−1, 0, 1, . . . ,H} such that the

denominator of (s + w)/n is smaller than n1−(k+1)/2`/`1/2k(2H)(`−1)/2k. By choosing a
moderately large k, and choosing ` ≈ k

√
(lg 2n)/ lg 2H, one can push the denominator

bound up to approximately n/2
√

(lg 2n)(lg 2H), and in particular find divisors larger than
approximately 2

√
(lg 2n)(lg 2H).

The function-field analogue. The integers in the Coppersmith–Howgrave-Graham–
Nagaraj algorithm can be replaced by polynomials over a finite field. The LLL algorithm
for integer lattice-basis reduction is replaced by simpler algorithms—see, e.g., (Lenstra
1985, Section 1) and (Mulders and Storjohann 2003, Section 2)—for polynomial lattice-
basis reduction.

Many of the cryptanalytic applications of the algorithm are uninteresting for polyno-
mials, since polynomials can be factored efficiently into irreducibles. However, the list-
decoding application remains interesting for polynomials—it is essentially the Guruswami–
Sudan algorithm!

Section 6 extends the Coppersmith–Howgrave-Graham–Nagaraj algorithm to solve a
slightly more complicated “linear combinations as divisors” problem. Section 7 presents
this paper’s new list-decoding method for binary Goppa codes, combining the function-
field analogue of the “linear combinations as divisors” algorithm with the extension of
Patterson’s algorithm presented in Section 4.

6. Linear combinations as divisors

The Coppersmith–Howgrave-Graham–Nagaraj algorithm discussed in Section 5, given
positive integers u, v, n with gcd{v, n} = 1, finds all small integers s such that u + sv
divides n. This section explains, more generally, how to find all pairs of small coprime
integers (r, s) with r > 0 such that ru+ sv divides n. The precise meaning of “small” is
defined below.

The algorithm can output additional pairs (r, s). It is up to the user to check which of
the pairs (r, s) is small, has ru+sv dividing n, etc. However, the algorithm is guaranteed
to finish quickly (and therefore to output very few pairs), and its output is guaranteed
to include all of the desired pairs (r, s).

The algorithm. Compute the quotient w of u by v modulo n. This algorithm actually
looks for small coprime (r, s) such that (s+ rw)/n has small denominator.

Fix positive integers G,H, and define Θ = H/G. The algorithm focuses on pairs (r, s)
such that 1 ≤ r ≤ G and −H ≤ s ≤ H.

Fix positive integers `, k with ` > k. Define L ⊂ Q[z] as the `-dimensional lattice
generated by the polynomials

1,
Θz + w

n
,

(
Θz + w

n

)2

, . . . ,

(
Θz + w

n

)k
,

Θz
(

Θz + w

n

)k
, (Θz)2

(
Θz + w

n

)k
, . . . , (Θz)`−k−1

(
Θz + w

n

)k
.

Use lattice-basis reduction to find a nonzero vector ϕ ∈ L with small coefficients.
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For each rational root of ϕ: Multiply the root by Θ, write the product in the form s/r
with gcd{r, s} = 1 and r > 0, and output (r, s).

What the algorithm accomplishes. The determinant of L is Θ`(`−1)/2/n`k−k(k+1)/2,
so reduction guarantees that√

ϕ2
0 + ϕ2

1 + · · · ≤ (2Θ)(`−1)/2

nk−k(k+1)/2`
.

Assume that 1 ≤ r ≤ G and −H ≤ s ≤ H. Then∣∣∣r`−1ϕ
( s

Θr

)∣∣∣ =
∣∣∣∣ϕ0r

`−1 + ϕ1r
`−2 s

Θ
+ · · ·+ ϕ`−1

s`−1

Θ`−1

∣∣∣∣
≤

√
(r`−1)2 + · · ·+

(
s`−1

Θ`−1

)2√
ϕ2

0 + ϕ2
1 + · · ·

≤
√
`G`−1 (2Θ)(`−1)/2

nk−k(k+1)/2`
=

√
`(2GH)(`−1)/2

nk−k(k+1)/2`
.

Assume further that (s+ rw)/n has denominator D. Then (s/r + w)/n is a multiple
of 1/Dr so all of

1,
s/r + w

n
, . . . ,

(
(s/r + w)

n

)k
, . . . , (s/r)`−k−1

(
(s/r + w)

n

)k
are multiples of (1/r)`−k−1(1/Dr)k = 1/Dkr`−1. Thus ϕ(s/Θr) is a multiple of 1/Dkr`−1;
i.e., r`−1ϕ(s/Θr) is a multiple of 1/Dk.

Now assume additionally that D < n1−(k+1)/2`/`1/2k(2GH)(`−1)/2k. Then 1/Dk >√
`(2GH)(`−1)/2/nk−k(k+1)/2`, so r`−1ϕ(s/Θr) must be 0; i.e., s/Θr is a root of ϕ. The

algorithm finds s/Θr if gcd{r, s} = 1.
In particular, if ru+ sv is a divisor of n with 1 ≤ r ≤ G, −H ≤ s ≤ H, gcd{r, s} = 1,

and ru+ sv > `1/2k(2GH)(`−1)/2kn(k+1)/2`, then the algorithm outputs (r, s).
By choosing a moderately large k, and choosing ` ≈ k

√
(lg 2n)/ lg 2GH, one can push

the bound `1/2k(2GH)(`−1)/2kn(k+1)/2` down to approximately 2
√

(lg 2n)(lg 2GH).

Comparison to other “Coppersmith-type” algorithms. My survey paper (Bern-
stein 2008) discusses a general method that, given a polynomial f , finds all small-height
rational numbers s/r such that f(s/r) has small height. Here “small height” means “small
numerator and small denominator.” This includes finding divisors in residue classes and
finding codeword errors beyond half the minimum distance, as discussed in Section 5;
other standard applications are finding divisors in short intervals, finding high-power
divisors, and finding modular roots.

All of these applications specify the denominator r; in other words, they find all small
integers s such that f(s) has small height. But this limitation is not inherent in the
method. The method discovers small pairs (r, s) even if both r and s are allowed to vary.

In particular, one can efficiently find all small-height rational numbers s/r such that
(s/r + w)/n has small height—in particular, all small-height rational numbers s/r such
that ru+ sv divides n. What I have shown in this section is that, for divisors ru+ sv ≈
n1/α, “small” includes all (r, s) with rs up to approximately n1/α2

.
The same method generalizes to polynomials f in more variables. One can, for example,

find all small integer pairs (r, s) such that f(r, s) has small height. However, the bivariate
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method is considerably more difficult to analyze and optimize than the univariate method.
Even when the bivariate method can be proven to work, it typically searches fewer
f inputs than the univariate method. What the algorithm in this section illustrates
is that homogeneous bivariate polynomials are almost as easy to handle as univariate
polynomials.

The function-field analogue. The integers in this algorithm can be replaced by poly-
nomials over a finite field. The resulting algorithm can be used for list decoding of classical
irreducible binary Goppa codes. See Section 7.

In this application one cares only about squares r, s. In other words, one wants to find
divisors of n of the form r2u+s2v. One can apply lattice-basis-reduction methods directly
to the polynomial (s2 + r2w)/n, but I don’t see how this would allow larger rs. Perhaps
I’m missing an easy factor-of-2 improvement (in general, or in the characteristic-2 case),
or perhaps there’s an explanation for why this type of improvement can’t work.

7. List decoding via divisors

Recall that the algorithm from Section 4 finds two polynomials ε0, ε1 ∈ F2m [x] such
that each desired error polynomial ε is a small linear combination of ε0 and ε1. Specifically,
if deg ε ≤ t+u and deg ε0 = t0 then ε = q20ε0 + q21ε1 for some polynomials q0, q1 ∈ F2m [x]
with deg q0 ≤ b(t+ u− t0)/2c and deg q1 ≤ b(t0 + u− t− 1)/2c.

A polynomial ε = q20ε0 + q21ε1 is useful only if its monic part splits into linear factors
of the form x−ai; in other words, only if it divides h =

∏
i(x−ai). Note that q0, q1 must

be coprime; otherwise ε would not be squarefree.
How do we search for divisors of h that are small coprime linear combinations of ε0, ε1?

Answer: This is exactly the function-field analogue of the problem solved in the previous
section!

To avoid unnecessary dependence on Sections 5 and 6, this section gives a self-
contained statement of the list-decoding algorithm. Readers who have studied the al-
gorithm in Section 6 should recognize its similarity to the algorithm in this section.

The list-decoding algorithm. Fix an integer u ≥ 0. This algorithm will try to correct
t+ u errors.

Compute ε0, ε1 by the algorithm of Section 4. Define t0 = deg ε0; g0 = 2b(u+ t− t0)/2c;
g1 = 2b(u+ t0 − t− 1)/2c; and θ = g1 − g0.

Assume for simplicity that gcd{ε1, h} = 1. Compute a polynomial δ ∈ F2m [x] such
that ε1δ mod h = ε0.

Fix integers ` > k > 0. Define L ⊂ F2m(x)[z] as the `-dimensional lattice generated
by the polynomials

1,
xθz + δ

h
,

(
xθz + δ

h

)2

, . . . ,

(
xθz + δ

h

)k
,

xθz

(
xθz + δ

h

)k
, (xθz)2

(
xθz + δ

h

)k
, . . . , (xθz)`−k−1

(
xθz + δ

h

)k
.

Use lattice-basis reduction to find a minimal-length nonzero vector ϕ ∈ L. Here the
length of ϕ0 + ϕ1z + · · · is, by definition, max{|ϕ0|, |ϕ1|, . . .}.
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Use standard polynomial-factorization algorithms to find all of ϕ’s roots in F2m(x),
and in particular to find roots that have the form q20/x

θq21 for coprime polynomials
q0, q1 ∈ F2m [x]. For each such root, compute ε = q20ε0 + q21ε1, and check whether ε is a
divisor of h; if it is, output the unique c ∈ Fn2 such that {i : ci − wi = 1} = {i : ε(ai) = 0}.

What the algorithm accomplishes. Consider any c ∈ Γ with |w − c| ≤ t+ u. Define
ε =

∏
i:wi 6=ci

(x − ai) ∈ F2m [x]. Then there are polynomials q0, q1 ∈ F2m [x], such that
ε = q20ε0+q21ε1, with deg q0 ≤ b(t+ u− t0)/2c = g0/2 and deg q1 ≤ b(t0 + u− t− 1)/2c =
g1/2; see Section 4.

If q0 = 0 then ε = q21ε1, but ε is squarefree, so ε/ε1 is a constant, so ε1 divides h, so
the algorithm outputs c. Assume from now on that q0 6= 0.

The fraction (q20ε0+q21ε1)/h is exactly 1/(h/ε), so the fraction (q21 +q20δ)/h is a multiple
of 1/(h/ε), so the fraction (q21/q

2
0 + δ)/h is a multiple of 1/(q20h/ε). The value ϕ(q21/x

θq20)
is a linear combination of

1,
q21/q

2
0 + δ

h
,

(
q21/q

2
0 + δ

h

)2

, . . . ,

(
q21/q

2
0 + δ

h

)k
,

q21
q20

(
q21/q

2
0 + δ

h

)k
, . . . ,

(
q21
q20

)`−k−1(
q21/q

2
0 + δ

h

)k
,

all of which are multiples of (1/q20)`−k−1(1/(q20h/ε))
k = 1/(q20)`−1(h/ε)k. The homog-

enized value (q20)`−1ϕ(q21/x
θq20) is therefore a multiple of 1/(h/ε)k, which has degree

−k(n− deg ε).
The specified basis elements of L have z-degrees 0, 1, 2, . . . , k, k + 1, k + 2, . . . , ` − 1

respectively, with leading coefficients

1,
xθ

h
,

(
xθ

h

)2

, . . . ,

(
xθ

h

)k
, xθ

(
xθ

h

)k
, (xθ)2

(
xθ

h

)k
, . . . , (xθ)`−k−1

(
xθ

h

)k
.

Thus L is a lattice of dimension `. Furthermore, the product of these leading coefficients is
xθ(`−1)`/2/hk`−k(k+1)/2, with degree θ(`−1)`/2+n(k(k+1)/2−k`). Thus each coefficient
of ϕ has degree at most θ(`− 1)/2 + n(k(k + 1)/2`− k).

The degree of q20 is at most g0, and the degree of q21/x
θ is at most g1−θ = g0, so the ho-

mogenized value (q20)`−1ϕ(q21/x
θq20) = ϕ0(q20)`−1 +ϕ1(q20)`−2q21/x

θ+ · · ·+ϕ`−1(q21/x
θ)`−1

has degree at most θ(` − 1)/2 + n(k(k + 1)/2` − k) + (` − 1)g0 = (g0 + g1)(` − 1)/2 +
n(k(k + 1)/2`− k).

If deg ε > (g0 + g1)(`− 1)/2k+ n(k+ 1)/2` then −k(n− deg ε) > (g0 + g1)(`− 1)/2 +
n(k(k + 1)/2` − k) so (q20)`−1ϕ(q21/x

θq20) must be 0. The algorithm finds q21/x
θq20 as a

root of ϕ, finds (q0, q1) since gcd{q0, q1} = 1, finds ε, sees that ε divides h, and outputs
c.

By choosing a moderately large k, and choosing ` ≈ k
√
n/(g0 + g1), one can push

the degree bound (g0 + g1)(` − 1)/2k + n(k + 1)/2` to approximately
√
n(g0 + g1) ≈√

2(u− 1)n. If the degree bound is below t+u then the algorithm will find every codeword
at distance t+u from w; if the degree bound is below t+u−1 then the algorithm will find
every codeword at distance t+u or t+u−1 from w; etc. One can cover smaller distances
by running the algorithm several times with different choices of u. (See (Bernstein 2008,
Section 6) for discussion of an analogous loop in the Coppersmith–Howgrave-Graham–
Nagaraj algorithm.)
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This decoding guarantee breaks down at approximately n −
√
n(n− 2t− 2) errors:

the degree bound
√

2(u− 1)n grows past t+ u as t+ u grows past n−
√
n(n− 2t− 2).

Handling non-coprimality. This algorithm assumes that gcd{ε1, h} = 1; see Section
4 for further discussion of this condition. A straightforward extension of the algorithm
would allow a larger gcd{ε1, h} but would be correspondingly less effective. I don’t know
whether there is a polynomial-time algorithm that provably handles arbitrary gcd{ε1, h}
without losing effectiveness.

Numerical example. This example is a continuation of the example in Section 4. Recall
that the extension of Patterson’s algorithm produced two polynomials ε0 = ζ74x22 + · · ·
and ε1 = ζ181x23 + · · · with gcd{ε1, h} = 1. The goal of the algorithm in this section is
to find a small linear combination ε = q20ε0 + q21ε1 that divides h = x256 − x.

Choose u = 2. Then t0 = 22, g0 = 2, g1 = 0, and θ = −2. The algorithm will search
for ε of degree t + u = 24; equivalently, for q0 of degree ≤ g0/2 = 1 and q0 of degree
≤ g1/2 = 0.

Choose k = 8 and ` = 87. Note that (g0 +g1)(`−1)/2k+n(k+1)/2` = 2783/116 < 24.
This example requires a moderately large k, since t + u = 24 is quite close to n −√
n(n− 2t− 2) ≈ 24.1.
Divide ε0 by ε1 modulo h to obtain δ = ζ200x255 + ζ62x254 + · · ·+ ζ85x+ ζ104. Define

L as the F2m [x]-submodule of F2m(x)[z] generated by

1,
z/x2 + δ

h
, . . . ,

(z/x2 + δ)8

h8
,
( z
x2

) (z/x2 + δ)8

h8
, . . . ,

( z
x2

)78 (z/x2 + δ)8

h8
.

Then L is an 87-dimensional lattice. The coefficients of 1, z, z2, . . . , z86 in the generators
are the columns of the following 87× 87 matrix:

1 δ/h δ2/h2 δ3/h3 δ4/h4 δ5/h5 δ6/h6 δ7/h7 δ8/h8 0 ··· 0

0 1/x2h 0 δ2/x2h3 0 δ4/x2h5 0 δ6/x2h7 0 δ8/x2h8 ··· 0

0 0 1/x4h2 δ/x4h3 0 0 δ4/x4h6 δ5/x4h7 0 0 ··· 0

0 0 0 1/x6h3 0 0 0 δ4/x6h7 0 0 ··· 0

0 0 0 0 1/x8h4 δ/x8h5 δ2/x8h6 δ3/x8h7 0 0 ··· 0

0 0 0 0 0 1/x10h5 0 δ2/x10h7 0 0 ··· 0

0 0 0 0 0 0 1/x12h6 δ/x12h7 0 0 ··· 0

0 0 0 0 0 0 0 1/x14h7 0 0 ··· 0

0 0 0 0 0 0 0 0 1/x16h8 0 ··· 0

0 0 0 0 0 0 0 0 0 1/x18h8 ··· 0

...
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 ··· 1/x172h8

It is convenient for computation to scale the entire matrix by x172h8 = x2220 + x180,
to avoid working with fractions. The determinant of the scaled matrix is x7482h36, with
degree 16698 < 192 · 87, so lattice-basis reduction is guaranteed to find a nonzero vector
ϕ ∈ x172h8L where each component has degree < 192.

I reduced the lattice basis and, unsurprisingly, found such a vector, namely ϕ =
ϕ0 +ϕ1z + · · ·+ϕ86z

86 where ϕ0 = ζ232x191 + ζ42x190 + · · ·+ ζ244x172, ϕ1 = ζ232x191 +
ζ226x190 + · · · + ζ132x170, and so on through ϕ86 = ζ145x191 + ζ10x190 + · · · + ζ36x0. It
turned out that the first 6 successive minima of the lattice all have degree < 192, so there
were actually 2566 − 1 possibilities for ϕ.
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I then computed the roots of ϕ in F2m [x] and found exactly one root of the desired
form: namely, ϕ(q21/x

θq20) = 0 for q1 = ζ153 and q0 = x− ζ175. This calculation was par-
ticularly straightforward since the irreducible factorization ϕ86 = ζ145(x170 + · · · )(x13 +
· · · )(x3 + · · · )(x3 + · · · )(x−ζ175)2 had only one square factor. A greatest-common-divisor
calculation between leading terms of two independent short vectors would have revealed
the same denominator even more easily.

Finally, the sum ε = q20ε0 +q21ε1 = ζ74x24 + · · · has 24 distinct roots, namely ζ2, ζ6, ζ7,
ζ15, ζ23, ζ38, ζ46, ζ59, ζ71, ζ73, ζ86, ζ88, ζ131, ζ138, ζ142, ζ150, ζ153, ζ159, ζ163, ζ165, ζ171, ζ172,
ζ206, ζ214. Correcting the corresponding positions in w produces the unique c ∈ Γ with
|w − c| ≤ 24.
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