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Abstract. The cryptographic literature contains many provably secure high-

speed authenticators. Some authenticators use n multiplications for length-n

messages; some authenticators have the advantage of using only about n/2

multiplications. Some authenticators use n variables for length-n messages;

some authenticators have the advantage of using only 1 variable. This paper,

after reviewing relevant polynomial-evaluation algorithms, introduces the first

authenticator that combines these advantages.

1. Introduction

Fix a finite field k. How quickly can we evaluate a polynomial f over k?
Let’s focus on polynomial algebraic algorithms: i.e., chains of additions,

subtractions, and multiplications. What is the smallest number of multiplications
in a polynomial algebraic algorithm that evaluates f? What is the smallest total
number of operations? What is the smallest number of operations with reasonable
weights for the costs of additions, subtractions, and multiplications? What is the
smallest number of cycles on an Intel Core 2 Duo?

Let’s focus on the simplest cost measure, the number of multiplications. The
most popular method of evaluating polynomials is “Horner’s rule,” a family of n-
multiplication polynomial algebraic algorithms that evaluate every univariate poly-
nomial of degree n.

It is easy to see that Horner’s rule is not always optimal: for example, x1024

can be evaluated with just 10 squarings. A classic observation is that Horner’s
rule is essentially never optimal: for every univariate polynomial f of degree n
there is a polynomial algebraic algorithm that evaluates f using only about n/2
multiplications. The original constructions (from 1955 Motzkin [24], 1958 Belaga
[2], et al.) assumed complex coefficients and could not handle most polynomials
over a finite field k; but Rabin and Winograd in [26] presented various families
of polynomial algebraic algorithms that evaluate every univariate polynomial of
degree n over k using only about n/2 multiplications.
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1.1. Contents of this paper. Let’s change the problem: instead of mapping
a family of polynomial algebraic algorithms surjectively to polynomials, let’s map a
family of polynomial algebraic algorithms injectively to polynomials. Can we have
n parameters in a family of m-multiplication polynomial algebraic algorithms that
compute distinct low-degree polynomials?

One way to see the impact of the change from surjectivity to injectivity is
to consider the same question for polynomials in more variables. Increasing the
number of variables produces a larger space of low-degree polynomials, making
surjectivity harder to achieve but making injectivity easier to achieve.

This question turns out to be directly relevant to high-speed cryptography,
specifically high-speed computation of authenticators that protect messages against
forgery. This paper explains the connection; explains the answers that are implicit
in three state-of-the-art secret-key message-authentication algorithms; and explains
a better answer, producing a faster message-authentication algorithm.

Specifically:
• Section 2 discusses n-variable n-multiplication authenticators: e.g.,

– 1974 Gilbert/MacWilliams/Sloane [13] and
– 1997 Halevi/Krawczyk “MMH” [15].

These authenticators use the obvious n-multiplication algorithm for dot
products.

• Section 3 discusses n-variable (n/2)-multiplication authenticators: e.g.,
– unpublished Carter/Wegman “NMH∗” discussed in [15, Section 5],
– 1997 Halevi/Krawczyk “NMH” [15, Section 5],
– 1999 Black/Halevi/Krawczyk/Krovetz/Rogaway “UMAC” [8],
– 2005 Boesgaard/Scavenius/Pedersen/Christensen/Zenner “Rabbit”

[9], and
– 2007 Krovetz “VMAC” [21].

These authenticators use a pseudo-dot-product algorithm introduced by
Winograd in 1968 to speed up matrix multiplication.

• Section 4 discusses 1-variable n-multiplication authenticators: e.g.,
– 1993 den Boer [12],
– 1994 Johansson/Kabatianskii/Smeets [18],
– 1994 Taylor [33],
– 1996 Shoup [29],
– 1999 Nevelsteen/Preneel [25],
– 1999 Bernstein “hash127” [3],
– 2000 Krovetz/Rogaway “PolyR” [22],
– 2002 Bernstein [4],
– 2004 Kohno/Viega/Whiting “CWC” [20],
– 2004 McGrew/Viega “GCM” [23], and
– 2005 Bernstein “Poly1305-AES” [5].

These authenticators use Horner’s n-multiplication rule for polynomial
evaluation.

• Section 5 introduces new 1-variable (n/2)-multiplication authenticators.
As far as I can tell, the ideas of Motzkin, Belaga, et al. are useless here;
my authenticators instead use a tweaked version of an algorithm published
by Rabin and Winograd in [26, Corollary 13].



POLYNOMIAL EVALUATION AND MESSAGE AUTHENTICATION 3

The number of multiplications in these polynomial-evaluation algorithms has an
obvious effect on cryptographic speed. The number of variables has a less obvious,
but often much larger, effect on cryptographic speed, as discussed in Section 3. My
new authenticators combine the advantages of a small number of multiplications
and a minimal number of variables.

Probably the injectivity question has been asked before outside the context
of cryptography. Perhaps the connection to cryptography has been pointed out
before. But it is clear that the connection has not been sufficiently exploited: my
new authenticator is faster than anything in the literature.

2. Linear polynomial evaluation
and message authentication

2.1. Dot products. The most obvious way to compute a dot product m1r1+
m2r2+ · · ·+m8r8 is to multiply each mi by ri and then sequentially add the results,
using 8 multiplications and 7 additions, as shown in the following diagram:
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Each node in this diagram computes a polynomial according to the following rules:
• The node labelled “m1” computes m1; the node labelled “r1” computes

r1; similarly for m2, r2, . . ..
• Each node labelled “×” computes the product of its two predecessor nodes.

For example, the leftmost node labelled “×” computes m1r1.
• Each node labelled “+” computes the sum of its two predecessor nodes.

For example, the leftmost node labelled “+” computes m1r1 + m2r2.
Evidently the final node computes the desired dot product m1r1 + · · ·+ m8r8.

More generally, the obvious chain of n multiplications and n − 1 additions
computes an n-term dot product.

2.2. A secure message-authentication code. Messages are not safe while
they are in transit through a public network such as the Internet. Attackers can
inspect messages, block messages from reaching their destination, and insert forged
messages of their choice. How do we distinguish forged messages from legitimate
messages? Here is one good answer.
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Fix a finite field k. The legitimate sender generates 9 independent uniform
random secrets r1, r2, . . . , r8, s ∈ k. The sender meets the legitimate receiver in
private and tells the receiver the same secrets r1, r2, . . . , r8, s.

Later the sender wants to send a message m to the receiver through a public
network, where m is a sequence of 8 components m1,m2, . . . ,m8 ∈ k. The sender
transmits m together with the authenticator a = m1r1 + · · ·+ m8r8 + s ∈ k.

The receiver receives (m′, a′) from the network. Perhaps an attacker changed
(m,a) into a different (m′, a′); or perhaps the attacker is inactive and (m′, a′) =
(m,a). The receiver checks whether a′ = m′

1r1+· · ·+m′
8r8+s; the receiver discards

(m′, a′) if a′ 6= m′
1r1 + · · ·+ m′

8r8 + s.
From the attacker’s point of view, given (m,a), all #k8 choices of (r1, . . . , r8)

are equally likely: each choice of (r1, . . . , r8) is consistent with exactly one choice
of s. A forgery attempt (m′, a′) with m′ 6= m succeeds if and only if

m′
1r1 + · · ·+ m′

8r8 − a′ = m1r1 + · · ·+ m8r8 − a,

i.e., (m′
1 −m1)r1 + · · · + (m′

8 −m8)r8 = a′ − a; this equation is satisfied for only
#k7 choices of (r1, . . . , r8).

Each forgery attempt therefore has chance at most 1/#k of success. If k is
reasonably large, say #k ≈ 2128, then this chance is negligible.

More generally, for any fixed n, a message m1, . . . ,mn will be protected by the
authenticator m1r1 + · · · + mnrn + s, where r1, . . . , rn, s are independent uniform
random elements of k.

2.3. History. This authenticator was, historically, the first provably secure
authenticator. It was introduced by Gilbert, MacWilliams, and Sloane in [13].
Specifically, [13, Section V] presents the authentication equation “si−j = c,” where
“s” is a message in a field of size q, “i” and “j” are secret elements of the same field,
and “c” is an authenticator; [13, Section VIII] generalizes to linear polynomials in
more variables, using the language of finite geometries. (The language used in [13]
seems to have deterred many potential readers; the Gilbert/MacWilliams/Sloane
authenticator is often miscredited to Carter and Wegman.)

The speed of the Gilbert/MacWilliams/Sloane authenticator does not seem to
have been appreciated until the 1997 Halevi/Krawczyk implementation report [15].
Halevi and Krawczyk chose a prime field k = Z/(232 + 15) to take advantage of
easy reductions modulo 232 + 15. Halevi and Krawczyk modified the authenticator
slightly to gain some extra speed (losing a few bits of security): specifically, starting
from 32-bit integers m1, r1, . . ., they computed m1r1 + · · · modulo 264, and then
reduced the result modulo 232 + 15. Halevi and Krawczyk went to some effort to
multiply efficiently using “MMX” instructions on their target CPU. Many of the
other papers mentioned in Section 1 have explored other choices of finite fields,
other tweaks to the authenticator, and other techniques of multiplying efficiently.

2.4. Handling multiple messages. If the same secrets r1, . . . , rn, s are used
to send two or more messages then security evaporates. However, if the sender and
receiver share independent uniform random secrets r1, . . . , rn, s[1], s[2], s[3], . . . ∈ k
then they can safely use (r1, . . . , rn, s[1]) for the first message, (r1, . . . , rn, s[2]) for
the second message, (r1, . . . , rn, s[3]) for the third message, etc. This is an example
of a structure introduced by Wegman and Carter in [34].

An attacker who succeeds at corrupting a message can trivially deduce a linear
equation for (r1, . . . , rn) and can thus forge additional messages. This “re-forgery”
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feature has attracted some attention: a few papers have breathlessly advertised it
as a new discovery, a few papers have criticized it as a disadvantage of the Wegman/
Carter structure, and a few papers have pointed out that it poses problems for the
idea of occasional forgeries being acceptable. I recommend choosing k large enough
that the attacker has no hope of ever succeeding.

Long secrets such as r1, . . . , rn, s[1], s[2], s[3], . . . can be simulated by short keys;
this is the whole point of “stream ciphers,” “cryptographically strong PRNGs,”
etc. For example, one can expand a 128-bit AES key z into the 1280000-bit string
AESz(0),AESz(1),AESz(2), . . . ,AESz(9999); a uniform random choice of z does
not produce a uniform random 1280000-bit string, but any attack on the resulting
authenticator implies an attack on AES. I don’t know whether this was considered
obvious 25 years ago; Brassard in [10] in 1983 suggested feeding a short key through
the Blum/Micali PRNG, the Blum/Blum/Shub PRNG, etc. to simulate the long
secrets inside the Wegman/Carter protocol.

In many situations, the long string r1, . . . , rn, s[1], s[2], s[3], . . . is not accessed
sequentially; see, e.g., [10, pages 82–83]. Fortunately, some stream ciphers allow
fast random access, allowing portions of the string to be dynamically generated from
a short key upon request. For example, i 7→ AESz(i) can be evaluated efficiently.

2.5. Wegman/Carter reconsidered. Tanja Lange pointed out to me in
2006 the possibility of discarding the Wegman/Carter structure and simply using
a new (r1, . . . , rn, s) for each message.

This possibility has not received serious attention in the literature. The obvious
disadvantage is that the secrets r1[1], . . . , rn[1], s[1], r1[2], . . . , rn[2], s[2], . . . would
consume n+1 times as much space (asymptotically) as the Wegman/Carter secrets
r1, . . . , rn, s[1], s[2], . . .. Wegman and Carter emphasize in [35, page 274] that they
use an “asymptotically optimal” number of secret bits. But counting bits seems
fairly pointless in light of subsequent developments:

• More advanced authenticators replace r1, . . . , rn by a single r ∈ k, no
matter how long the message is, as discussed in Sections 4 and 5 of this
paper. This means that the secrets r[1], s[1], r[2], s[2], . . . consume only
twice as much space as the Wegman/Carter secrets r, s[1], s[2], . . ..

• The total space becomes irrelevant when secrets are generated dynamically
from a short key. The Wegman/Carter structure needs to generate and
inspect the same number of secrets as using a new r, s for each message.

• A stream cipher F that produces a large output block allows r[i], s[i] to
be computed from a single Fz(i). The Wegman/Carter structure is slower
in this situation: it obtains r from Fz(0) and s[i] from Fz(i), requiring
two evaluations of F . One could cache r along with the key z, but this
effectively increases the space used for the key. Senders and receivers
juggling many simultaneous keys miss the cache more often; hardware
implementations become more expensive.

• Using a new r[i], s[i] for the ith message makes each “re-forgery” just as
difficult as an initial forgery, if the receiver takes the standard step of not
allowing two authenticated messages with the same message number.

Perhaps the Wegman/Carter structure has outlived its usefulness!

2.6. Handling variable-length messages. If #k ≥ 28b then an element of
k can encode b bytes, so n elements of k can encode bn bytes. However, most
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applications allow messages to vary in length; the set of messages is not (Z/256)bn

but the larger set (Z/256)0 ∪ (Z/256)1 ∪ · · · ∪ (Z/256)bn.
One reasonably efficient answer is to split each message into a sequence of b-byte

blocks, possibly followed by one final block between 1 and b − 1 bytes; to encode
each block (x0, x1, . . . , xi−1) as the integer x0 + 256x1 + · · · + 256i−1xi−1 + 256i;
to encode each integer as an element of k, assuming #k ≥ 28b+1; and to 0-pad the
result out to n elements of k. This encoding satisfies the security requirement that
distinct byte strings produce distinct elements of kn; it also has the virtue that
strings of only bj bits, for j < n, involve only r1, . . . , rj .

3. Fast pseudo-linear polynomial evaluation
and message authentication

3.1. Pseudo dot products. Each entry in the product MR of two n × n
matrices M,R is, by definition, the dot product of a row of M and a column of R.
If each dot product is computed by the obvious algorithm discussed in Section 2,
with n multiplications and n−1 additions, then the n2 entries of MR are computed
with a total of n3 multiplications and n3 − n2 additions.

Winograd in [37] introduced a clever dot-product algorithm that reduces the
number of multiplications to about n3/2. The number of additions increases by a
similar amount, but additions are much faster than multiplications in typical cost
measures. (State-of-the-art matrix-multiplication algorithms combine Winograd’s
idea with subsequent improvements for large n, starting with Strassen’s algorithm
in [32].)

The following diagram shows Winograd’s algorithm for n = 8. The algorithm
uses 15 operations, as in Section 2, but those operations consist of 11 additions and
only 4 multiplications:
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The output of this algorithm is not exactly the dot product m1r1 + · · · + m8r8.
It is a pseudo dot product, specifically the dot product m1r1 + · · ·+ m8r8 plus
m1m2 + m3m4 + m5m6 + m7m8 plus r1r2 + r3r4 + r5r6 + r7r8.

In the context of matrix multiplication, the sum m1m2 + · · · can be cached
along with the row m and reused for each column r, and the sum r1r2 + · · · can be
cached along with the column r and reused for each row m, so Winograd’s pseudo
dot product is easily adjusted to produce the usual dot product. As we will see, in
the context of message authentication, one can simply replace the dot product in the
Gilbert/MacWilliams/Sloane authenticator with Winograd’s pseudo dot product.

3.2. Another secure message-authentication code. Fix a finite field k.
As in Section 2.2, the legitimate sender generates 9 independent uniform random
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secrets r1, r2, . . . , r8, s ∈ k and privately transmits those secrets to the legitimate
receiver.

Later the sender wants to send a message m to the receiver through a public
network, where m is a sequence of 8 components m1,m2, . . . ,m8 ∈ k. The sender
transmits m together with the authenticator

a = (m1 + r2)(m2 + r1) + · · · (m7 + r8)(m8 + r7) + s ∈ k.

As in Section 2.2, the message (m′, a′) delivered to the receiver might not be (m,a).
The receiver discards (m′, a′) if a′ 6= (m′

1+r2)(m′
2+r1)+· · ·+(m′

7+r8)(m′
8+r7)+s.

From the attacker’s point of view, given (m,a), all #k8 choices of (r1, . . . , r8)
are equally likely; as in Section 2.2, the addition of a uniform random secret s hides
all information about (r1, . . . , r8). A forgery attempt (m′, a′) with m′ 6= m succeeds
if and only if

(m′
1 + r2)(m′

2 + r1) + · · ·+ (m′
7 + r8)(m′

8 + r7)− a′

= (m1 + r2)(m2 + r1) + · · ·+ (m7 + r8)(m8 + r7)− a,

i.e., (m′
1 − m1)r1 + (m′

2 − m2)r2 + · · · + (m′
7 − m7)r7 + (m′

8 − m8)r8 = a′ − a +
m1m2−m′

1m
′
2+ · · ·+m7m8−m′

7m
′
8. This equation is satisfied for only #k7 choices

of (r1, . . . , r8). Each forgery attempt therefore has chance at most 1/#k of success.
The same idea can easily be used for messages of any length n, for multiple

messages, and for variable-length messages, as in Section 2. It uses only half as
many multiplications as the Gilbert/MacWilliams/Sloane authenticator.

3.3. History. As far as I know, the first publication of this authenticator
was in the 1997 Halevi/Krawczyk paper [15, Section 5], with credit to Wegman
and Carter (and no credit to Winograd). The first implementation results were in
a series of papers by Black, Halevi, Krawczyk, Krovetz, and Rogaway describing
various functions called “UMAC,” starting with [8] in 1999. Newer functions using
the same idea include “Rabbit,” published by Boesgaard, Scavenius, Pedersen,
Christensen, and Zenner in [9], and “VMAC,” published by Krovetz in [21].

3.4. The inefficiency of multiple variables. This authenticator uses n+1
secrets r1, r2, . . . , rn, s ∈ k to handle a message m1,m2, . . . ,mn of length n. UMAC,
for example, uses 1600 bytes of secret data to handle a typical-size network packet,
and spends more than 20000 cycles on typical CPUs to generate that secret data
from a short AES key.

For comparison, consider the popular “HMAC-MD5” authenticator, essentially
MD5(1, z, MD5(0, z, m)). HMAC-MD5 uses a short key z, for example 16 bytes,
and finishes handling a typical-size network packet m in under 10000 cycles. There
are many reasons to question the security of HMAC-MD5, but users are generally
not happy to switch to an authentication function that is more than twice as slow!

One can reasonably ignore the cost of computing the variables r1, r2, . . . , rn

if those variables are reused for a large number of messages. The UMAC papers
advertise much better speeds obtained after the 1600 bytes of secrets have been
precomputed and cached. But this precomputation creates a different type of speed
problem for busy Internet servers receiving messages from thousands of senders
simultaneously: thousands of 1600-byte tables do not fit into cache simultaneously
and take time to load into cache, often swamping the time used for the main UMAC
computation. Large precomputed tables are even more troublesome for low-cost
hardware devices.
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The authenticators discussed in Sections 4 and 5 replace r1, r2, . . . , rn with a
single r ∈ k, eliminating these problems.

4. High-degree polynomial evaluation
and message authentication

4.1. Horner’s rule. The following diagram shows the standard method to
compute the polynomial m1r

8 + m2r
7 + · · · + m8r, using 8 multiplications and 7

additions:
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4.2. Another secure message-authentication code. Fix a finite field k.
The legitimate sender generates two independent uniform random secrets r, s ∈ k
and privately transmits those secrets to the legitimate receiver.

Later the sender wants to send a message m to the receiver through a public
network, where m is a sequence of 8 components m1,m2, . . . ,m8 ∈ k. The sender
transmits m together with the authenticator a = m1r

8 + · · · + m8r + s ∈ k. As
in previous sections, the message (m′, a′) delivered to the receiver may be different
from (m,a). The receiver discards (m′, a′) if a′ 6= m′

1r
8 + · · ·+ m′

8r + s.
From the attacker’s point of view, given (m,a), all #k choices of r are equally

likely. A forgery attempt (m′, a′) with m′ 6= m succeeds if and only if m′
1r

8 + · · ·+
m′

8r − a′ = m1r
8 + · · · + m8r − a, i.e., (m′

1 −m1)r8 + · · · + (m′
8 −m8)r = a′ − a.

This is a nonzero polynomial equation in r of degree at most 8, so it has at most 8
roots in k. Each forgery attempt therefore has chance at most 8/#k of success.

More generally, for any fixed n, a message m1, . . . ,mn will be protected by the
authenticator m1r

n + · · · + mnr + s, where r, s are independent uniform random
elements of k. Each forgery attempt has chance at most n/#k of success. The
same idea can also be used for any number of messages, as in Sections 2.4 and 2.5,
and can be extended to variable-length messages.

4.3. History. This authenticator was introduced in three independent papers:
[12] by den Boer; [18] by Johansson, Kabatianskii, and Smeets; and [33] by Taylor.
The first speed reports for this authenticator were [29, Section 5] by Shoup and
[25, Section 3.5] by Nevelsteen and Preneel, in both cases with #k = 264. Most
subsequent papers have switched from characteristic 2 to large characteristic to
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obtain better performance in software on common CPUs. I reported speeds for
#k = 2127 − 1 (foolishly assuming a large precomputed table) in [3]; I suggested
#k = 2130 − 5 in [4] and reported speeds (with no tables) in [5]. Meanwhile,
Krovetz and Rogaway reported speeds for #k = 232 − 5 (with no tables) in [22];
Kohno, Viega, and Whiting reported speeds for #k = 2127 − 1 in [20]; McGrew
and Viega switched back to characteristic 2 for the sake of hardware performance,
and reported speeds for #k = 2128 in [23].

This authenticator seems to have attracted more interest than the n-variable
authenticators discussed in Sections 2 and 3; the obvious explanation is that it
solves the problems discussed in Section 3.4. On the other hand, the authenticator
in Section 3 has the advantage of using half as many multiplications. Fortunately,
with more work, these advantages can be combined. See Section 5.

5. Fast high-degree polynomial evaluation
and message authentication

5.1. Beyond Horner’s rule. The following diagram presents an 8-parameter
family of polynomial-evaluation algorithms using 3 squarings, 4 multiplications, and
9 additions:
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The output of this algorithm is H(m1,m2, . . . ,m8), a degree-15 polynomial in r; see
Section 5.2 for the general definition of H. The critical feature of H is that different
vectors (m1,m2, . . . ,m8) ∈ k8 produce different polynomials H(m1,m2, . . . ,m8) ∈
k[r].

The central idea of this algorithm was published by Rabin and Winograd in [26,
Corollary 13]. (I have found two sources attributing the idea to Winograd’s earlier
papers [38] and [39], but I have not been able to track down copies of [38] and [39];
my presumption is that those papers also give credit to Rabin.) I have changed a
few details of the Rabin/Winograd algorithm, for reasons discussed below.

5.2. Definition of H. The polynomial H(m1,m2, . . . ,mn) ∈ k[r] is defined
as follows for n ≥ 0:

• H() = 0.
• H(m1) = m1.
• H(m1,m2) = m1r + m2.
• H(m1,m2,m3) = (r + m1)(r2 + m2) + m3.
• H(m1,m2, . . . ,mn) = H(m1, . . . ,mt−1) · (rt + mt) + H(mt+1, . . . ,mn) if

t ∈ {4, 8, 16, 32, . . .} and t ≤ n < 2t.
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Computing H(m1, . . . ,mn) directly from the definition involves a few squarings to
compute r2, r4, r8, . . .; bn/2c multiplications; and n + b(n− 3)/4c additions. For
example:

• H() = 0; degree −∞; 0 squarings, 0 multiplications, 0 additions.
• H(m1) = m1; degree ≤ 0; 0 squarings, 0 multiplications, 0 additions.
• H(m1,m2) = m1r + m2; degree ≤ 1; 0 squarings, 1 multiplication, 1

addition.
• H(m1,m2,m3) = (r + m1)(r2 + m2) + m3; degree 3; 1 squaring, 1 multi-

plication, 3 additions.
• H(m1,m2,m3,m4) = ((r + m1)(r2 + m2) + m3)(r4 + m4); degree 7; 2

squarings, 2 multiplications, 4 additions.
• H(m1,m2,m3,m4,m5) = ((r+m1)(r2 +m2)+m3)(r4 +m4)+m5; degree

7; 2 squarings, 2 multiplications, 5 additions.
• H(m1,m2,m3,m4,m5,m6) = ((r+m1)(r2 +m2)+m3)(r4 +m4)+m5r+

m6; degree 7; 2 squarings, 3 multiplications, 6 additions.
• H(m1,m2,m3,m4,m5,m6,m7) = ((r+m1)(r2+m2)+m3)(r4+m4)+(r+

m5)(r2 + m6) + m7; degree 7; 2 squarings, 3 multiplications, 8 additions.
• H(m1,m2,m3,m4,m5,m6,m7,m8) = (((r+m1)(r2+m2)+m3)(r4+m4)+

(r+m5)(r2+m6)+m7)(r8+m8); degree 15; 3 squarings, 4 multiplications,
9 additions.

It is easy to see that every monic degree-3 polynomial can be expressed as
H(m1,m2,m3) for a unique (m1,m2,m3); that every monic degree-7 polynomial
can be expressed as H(m1, . . . ,m7) for a unique (m1, . . . ,m7); and so on for degrees
15, 31, etc. This is exactly the content of [26, Corollary 13].

For other values of n my function H is different from, and slightly faster than,
the constructions in [26]. Rabin and Winograd sacrifice roughly lg n multiplications
to achieve surjectivity. The novelty here is in asking the right question; the tweaks
to the constructions are straightforward once the goal of top-speed injectivity has
been identified.

5.3. Injectivity proofs. Theorem 5.5 states that H is injective for fixed-
length inputs. Theorem 5.6 states that H is injective for variable-length inputs,
when the inputs are limited to an appropriate subset of k.

Theorem 5.4. Let k be a finite field. Let n be a nonnegative integer. Let
m1, . . . ,mn be elements of k. If n ≤ 2 then deg H(m1, . . . ,mn) ≤ 1. If n ≥ 3 then
H(m1, . . . ,mn) is a monic polynomial of degree 2blg nc+1 − 1.

Proof. Induct on n. Write h = H(m1, . . . ,mn).
Case 0: n = 0. Then h = 0 so deg h = −∞ ≤ 1.
Case 1: n = 1. Then h = m1 so deg h ≤ 0 ≤ 1.
Case 2: n = 2. Then h = m1r + m2 so deg h ≤ 1.
Case 3: n = 3. Then h = (r + m1)(r2 + m2) + m3 so h is a monic polynomial

of degree 3 = 2blg 3c+1 − 1.
Case 4: n ≥ 4. Write t = 2blg nc. Then t ∈ {4, 8, 16, 32, . . .} and t ≤ n <

2t so h = H(m1, . . . ,mt−1) · (rt + mt) + H(mt+1, . . . ,mn) by definition of H.
By the inductive hypothesis, H(m1, . . . ,mt−1) is a monic polynomial of degree
2blg(t−1)c+1 − 1 = t − 1, so H(m1, . . . ,mt−1) · (rt + mt) is a monic polynomial of
degree 2t − 1. By the inductive hypothesis again, H(mt+1, . . . ,mn) has degree at
most t− 1. Thus h is a monic polynomial of degree 2t− 1 = 2blg nc+1 − 1. �
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Theorem 5.5. Let k be a finite field. Let n be a nonnegative integer. Then H
maps kn injectively to the polynomial ring k[r].

Proof. Assume that H(m1,m2, . . . ,mn) = H(m′
1,m

′
2, . . . ,m

′
n). The goal is

to prove that (m1,m2, . . . ,mn) = (m′
1,m

′
2, . . . ,m

′
n). The proof will induct on n.

If n = 0 then there is nothing to prove.
If n = 1 then m1 = H(m1) = H(m′

1) = m′
1.

If n = 2 then m1r + m2 = H(m1,m2) = H(m′
1,m

′
2) = m′

1r + m′
2 so m1 = m′

1

and m2 = m′
2.

If n = 3 then (r + m1)(r2 + m2) + m3 = H(m1,m2,m3) = H(m′
1,m

′
2,m

′
3) =

(r + m′
1)(r

2 + m′
2) + m′

3. Compare coefficients of r2 to see that m1 = m′
1; compare

coefficients of r1 to see that m2 = m′
2; compare coefficients of r0 to see that

m1m2 + m3 = m′
1m

′
2 + m′

3, implying m3 = m′
3.

Assume from now on that n ≥ 4. Define t = 2blg nc. Then t ≤ n < 2t, so
H(m1, . . . ,mn) = H(m1, . . . ,mt−1) · (rt + mt) + H(mt+1, . . . ,mn) by definition of
H.

By Theorem 5.4, H(m1, . . . ,mt−1) and H(mt+1, . . . ,mn) have degree at most
t−1, so bH(m1, . . . ,mn)/rtc = H(m1, . . . ,mt−1). Similarly bH(m′

1, . . . ,m
′
n)/rtc =

H(m′
1, . . . ,m

′
t−1). Hence H(m1, . . . ,mt−1) = H(m′

1, . . . ,m
′
t−1). By the inductive

hypothesis, (m1, . . . ,mt−1) = (m′
1, . . . ,m

′
t−1).

By Theorem 5.4 again, the coefficient of rt−1 in H(m1, . . . ,mt−1) is 1, and the
coefficient of rt−1 in H(mt+1, . . . ,mn) is [n − t ≥ t/2]. The coefficient of rt−1 in
H(m1, . . . ,mn) is therefore mt + [n− t ≥ t/2]. Similarly, the coefficient of rt−1 in
H(m′

1, . . . ,m
′
n) is m′

t + [n− t ≥ t/2]. Hence mt = m′
t.

Finally H(mt+1, . . . ,mn) = H(m′
t+1, . . . ,m

′
n), so by the inductive hypothesis

(mt+1, . . . ,mn) = (m′
t+1, . . . ,m

′
n). �

Theorem 5.6. Let k be a finite field. Let S be a subset of k. Assume that
0 /∈ S and that S ∩ (S + 1) = {}. Then H maps S0 ∪ S1 ∪ S2 ∪ · · · injectively to
the polynomial ring k[r].

The notation S ∩ (S + 1) = {} means that each s ∈ S has s + 1 /∈ S. For
example, one can take S = {1, 3, 5, 7, . . . , p− 2} if k is a prime field Z/p. A closer
look at the proof reveals that the condition 0 /∈ S matters only for m1,m5,m9, . . .,
while the condition s + 1 /∈ S matters only for m4,m8,m12, . . .; one can therefore
squeeze a few more message bits into kn.

Proof. Assume that H(m1, . . . ,mn) = H(m′
1, . . . ,m

′
n′), with each mi ∈ S

and each m′
i ∈ S. The goal is to prove that (m1, . . . ,mn) = (m′

1, . . . ,m
′
n′). If

n = n′ then we are done by Theorem 5.5; the difficulty is that n could be different
from n′.

Observe that the degree of H(m1, . . . ,mn) controls the range of n, and therefore
also the range of n′. Specifically, H() = 0, with degree −∞; H(m1) = m1, with
degree 0, since m1 6= 0 by hypothesis; H(m1,m2) = m1r + m2, with degree 1,
for the same reason; H(m1,m2,m3) has degree 3; H(m1, . . . ,mn) has degree 7 for
4 ≤ n ≤ 7, by Theorem 5.4; H(m1, . . . ,mn) has degree 15 for 8 ≤ n ≤ 15, by
Theorem 5.4; etc.

So fix t ∈ {4, 8, 16, . . .}, and assume that t ≤ n < 2t and t ≤ n′ < 2t. Now

H(m1, . . . ,mn) = H(m1, . . . ,mt−1) · (rt + mt) + H(mt+1, . . . ,mn)

H(m′
1, . . . ,m

′
n′) = H(m′

1, . . . ,m
′
t−1) · (rt + m′

t) + H(m′
t+1, . . . ,m

′
n′)
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by definition of H, so (m1, . . . ,mt−1) = (m′
1, . . . ,m

′
t−1) exactly as in the proof of

Theorem 5.5.
The coefficient of rt−1 in H(m1, . . . ,mt−1) is 1, and the coefficient of rt−1 in

H(mt+1, . . . ,mn) is either 0 or 1, by Theorem 5.4. Therefore the coefficient of
rt−1 in H(m1, . . . ,mn) is either mt or mt + 1. Similarly, the coefficient of rt−1

in H(m′
1, . . . ,m

′
n′) is either m′

t or m′
t + 1. Hence mt = m′

t, or mt = m′
t + 1, or

mt + 1 = m′
t, or mt + 1 = m′

t + 1. Now mt,m
′
t ∈ S so mt + 1,m′

t + 1 /∈ S by
hypothesis; hence mt 6= m′

t + 1 and mt + 1 6= m′
t. Therefore mt = m′

t.
Finally H(mt+1, . . . ,mn) = H(m′

t+1, . . . ,m
′
n′), so by the inductive hypothesis

(mt+1, . . . ,mn) = (m′
t+1, . . . ,m

′
n′). �

5.7. A new secure message-authentication code. Fix a finite field k. As
in Section 4.2, the legitimate sender generates two independent uniform random
secrets r, s ∈ k and privately transmits those secrets to the legitimate receiver.

Later the sender wants to send a message m to the receiver through a public
network, where m is a sequence of 8 components m1,m2, . . . ,m8 ∈ k. The sender
transmits m together with the authenticator a = rH(m1, . . . ,m8) + s ∈ k. As
in previous sections, the message (m′, a′) delivered to the receiver may be different
from (m,a). The receiver discards (m′, a′) if a′ 6= rH(m′

1, . . . ,m
′
8) + s.

A forgery attempt (m′, a′) with m′ 6= m succeeds if and only if

r(H(m′
1, . . . ,m

′
8)−H(m1, . . . ,m8)) = a′ − a.

This is a nonzero polynomial equation in r of degree at most 15: H(m′
1, . . . ,m

′
8)

and H(m1, . . . ,m8) are monic polynomials of degree 15 by Theorem 5.4, and they
are distinct by Theorem 5.5. This equation is therefore satisfied for at most 15
choices of r ∈ k. Each forgery attempt therefore has chance at most 15/#k of
success.

More generally, for any fixed n, a message m1, . . . ,mn will be protected by
the authenticator rH(m1, . . . ,mn)+ s, where r, s are independent uniform random
elements of k. Each forgery attempt has chance at most (2n− 1)/#k of success if
n ≥ 1. The same idea can also be used for any number of messages, as in Sections
2.4 and 2.5.

Some care is required for variable-length messages. The authenticator can safely
be used for messages in S0 ∪ S1 ∪ · · · if S ⊂ k satisfies 0 /∈ S and S ∩ (S + 1) = {}.
See Theorem 5.6.

5.8. Comparison to linear authenticators. The fast linear authenticators
described in Section 3 use approximately n/2 multiplications, 3n/2 additions, and
n variables. The new authenticators described in this section use approximately
lg n squarings, n/2 multiplications, 5n/4 additions, and 1 variable.

The critical change here is from n variables to 1 variable; see Section 3.4. The
improvement from 3n/2 additions to 5n/4 additions might also be noticeable. There
is an extra cost of lg n squarings, but this cost becomes unnoticeable as n grows.
One could cache r2, r4, r8, . . ., eliminating the squarings in favor of lg n variables.
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