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Abstract. Let P be a point on an elliptic curve over a finite field of large

characteristic. Exactly how many points 2P, 3P, 5P, 7P, 9P, . . . , mP should be

precomputed in a sliding-window computation of nP? Should some or all

of the points be converted to affine form, and at which moments during the

precomputation should these conversions take place? Exactly how many field

multiplications are required for the resulting computation of nP? The answers

depend on the size of n, the I/M ratio, the choice of curve shape, the choice of

coordinate system, and the choice of addition formulas. This paper presents

answers that, compared to previous analyses, are more carefully optimized and

cover a much wider range of situations.

1. Introduction

Consider the problem of computing a scalar multiple nP of a point P on an
elliptic curve over a finite field of large characteristic. Cohen, Miyaji, and Ono,
in a classic paper [12], analyzed the cost of a wide variety of scalar-multiplication
methods and issued concrete recommendations for the lowest-cost methods. For
example, for 160-bit scalars, Cohen, Miyaji, and Ono recommended one method
using 4I + 1488.4M (i.e., 4 field inversions and on average 1488.4 field multiplica-
tions; a field squaring is implicitly counted as 0.8 field multiplications) and another
method using 1610.2M. Both methods produce nP in Jacobian coordinates; the
second method is better if I/M is large.

In this paper we identify faster scalar-multiplication methods. For example,
for 160-bit scalars, we obtain nP in Jacobian coordinates using just 1I + 1495.8M
when I/M is small, or 1573.8M when I/M is large. Even better, for curves that
allow the “a4 = −3” speedup, we obtain nP in Jacobian coordinates using just
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Figure 1.1. Multiplications per bit for 160-bit scalars, as function
of the I/M ratio, assuming S/M = 0.8.

1I + 1434.1M or 1511.9M. Even better, for curves that can be transformed to
Edwards form, we obtain nP in inverted Edwards coordinates using just 1287.8M.

There are several reasons that, compared to the analysis in [12], we find lower
costs for scalar multiplication:

• We use faster formulas for elliptic-curve addition and doubling. For exam-
ple, Cohen, Miyaji, and Ono say that doubling in projective coordinates
takes 7M + 5S = 11M; we replaced a multiplication with a squaring,
reducing the cost to 6M + 6S = 10.8M.

• We assume that curves are sensibly chosen with small parameters so that
multiplications by those parameters have negligible cost. For example,
choosing a small curve parameter “a4” in projective coordinates reduces
the cost of doubling to 5M + 6S = 9.8M.

• We use “fractional windows”: precomputing 2P, 3P, 5P, 7P, . . . ,mP for
any odd m ≥ 3. See Section 3. For example, for 160-bit scalars in
Jacobian coordinates without inversions, we recommend precomputing
2P, 3P, 5P, 7P, 9P, 11P, 13P . Cohen, Miyaji, and Ono impose the com-
mon restriction m ∈ {3, 7, 15, 31, . . .} and are thus forced to precompute
2P, 3P, 5P, 7P, 9P, 11P, 13P, 15P . The benefit of fractional windows de-
pends on how far the optimal m is from a power of 2.

• We further optimize the precomputation by allowing 0 inversions, 1 in-
version, 2 inversions, or 3 inversions at carefully selected moments. See
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Figure 1.2. Multiplications per bit for 256-bit scalars, as function
of the I/M ratio, assuming S/M = 0.8.

Section 4. Cohen, Miyaji, and Ono consider only two possibilities, namely
0 inversions and lg(m + 1) inversions.

• We incorporate a faster use of 1 inversion proposed by Dahmen, Okeya,
and Schepers in the recent paper [13]. Our graphs also include “Jacobian-
O” and “Jacobian-3-O” without this speedup to show how much the
speedup helps.

• We consider parameter families that allow further speedups in additions
and doublings: “Projective-3” and “Jacobian-3” and “2DIK” and “3DIK.”
See Section 2. For example, choosing a4 = −3 in projective coordinates
reduces the cost of doubling to 7M + 3S = 9.4M.

• We take account of different curve shapes allowing faster additions and
doublings: “Hessian” and “JacIntersect” and “JQuartic” and “ExtJQuar-
tic” and “Edwards” and “InvEdwards.” See Section 2.

Some papers in the last ten years have updated parts of the analysis of [12]— for
example, Dahmen, Okeya, and Schepers included a comparison of their 1-inversion
method to 0 inversions and lg(m+1) inversions for Std-Jacobian—but our analysis
is much more comprehensive than any previous analysis in the literature.

Figure 1.1 presents our results for 160-bit scalars in graphical form. For ex-
ample, the graph includes a small circle (red in color displays) next to “2DIK” at
horizontal position 8 and vertical position ≈ 8.4. This small circle indicates that
160-bit elliptic-curve scalar multiplication in doubling-oriented Doche/Icart/Kohel
coordinates, with the best parameters that we found, uses≈ 8.4 field multiplications
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Figure 1.3. Multiplications per bit for 512-bit scalars, as function
of the I/M ratio, assuming S/M = 0.8.

per bit if I/M = 8. Here I/M is the ratio between the time for a field inversion and
the time for a field multiplication. Red circles at subsequent horizontal positions
show how scalar multiplication slows down as I/M increases; the maximum, just
below 9 field multiplications per bit (with no inversions), is reached once I/M in-
creases to about 85. Other colors show similar results for other coordinate systems.

Table 4.1 presents the same results in tabular form, with additional details. For
example, the table row that begins “160 2DIK 2I” shows the best parameters that
we found using 2 inversions for 160-bit scalar multiplication in doubling-oriented
Doche/Icart/Kohel coordinates. The “m” column in the same row lists “9” to
indicate that we precomputed 2P, 3P, 5P, 7P, 9P ; here we used one inversion to
convert 2P to affine coordinates, and the other inversion to convert 3P, 5P, 7P, 9P
to affine coordinates. The “Multiplications and squarings” column lists the cost of
scalar multiplication with these parameters, namely “598.9M+923.4S ≈ 1337.6M”
plus (implicitly) the aforementioned two inversions; this means about 1353.6M for
I/M = 8, i.e., about 8.46 multiplications per bit. The “I/M” column lists “≤ 14.0”
to indicate that 2 inversions are preferable to 1 inversion when I ≤ 14.0M. For
details on the precomputations and in particular on how the inversions are used we
refer to Section 4.

Operation counts for projective coordinates appear in Table 4.1 but are above
the top of Figure 1.1. We could have changed the scale of Figure 1.1 to include
projective coordinates, but the other coordinate systems would then have been
uncomfortably squished.
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To emphasize the importance of speedups in elliptic-curve addition, we an-
alyzed not only Jacobian and Jacobian-3 using the best speeds known, but also
“Std-Jacobian” using the speeds most commonly quoted in the literature. The
Std-Jacobian results in Figure 1.1 are considerably worse than the Jacobian and
Jacobian-3 results. The graph also shows the striking advantage of recent advances
in curve shapes, notably Edwards and ExtJQuartic and InvEdwards. InvEdwards
is the current speed leader.

Figure 1.2 and Table 4.2 present similar results for 256-bit scalars. Figure 1.3
and Table 4.3 present similar results for 512-bit scalars. The increase in bit size
reduces the number of curve additions per bit, saving time per bit and generally
reducing the vertical height of the graphs. Some systems benefit slightly more than
others; for example, the increase in bit size noticeably reduces the gap between
2DIK and Edwards for small I/M.

We did not consider I/M ratios below 8. As far as we can tell, the only
implementations of large-characteristic field arithmetic with I/M < 8 are imple-
mentations in which multiplication is very poorly optimized.

Like Cohen, Miyaji, and Ono, we assume that S/M = 0.8 and that field addi-
tions, field subtractions, etc. take negligible time. These assumptions are standard
but debatable. Our analysis can easily accommodate changes in these assumptions,
in the same way that it accommodates variations in curve shapes, coordinate sys-
tems, addition formulas, etc.; our software automatically and efficiently identifies
optimal parameters given the costs of elliptic-curve operations.

2. Fast addition on elliptic curves

Each elliptic curve over a field k of large characteristic can be written in Weier-
strass form

E : y2 = x3 + a2x
2 + a4x + a6

for some a2, a4, a6 ∈ k with 4a6a
3
2 − a2

4a
2
2 − 18a6a4a2 + 4a3

4 + 27a2
6 6= 0. The group

of k-rational points is denoted by E(k); it contains the affine points (x1, y1) ∈ k×k
satisfying y2

1 = x3
1 + a2x

2
1 + a4x1 + a6 and one point at infinity.

The standard formulas to add (x1, y1), (x2, y2) on E with (x2, y2) 6= (x1,−y1)
are given by (x1, y1) + (x2, y2) = (x3, y3) = (λ2 − a2 − x1 − x2, λ(x1 − x3) − y1)
where

λ =


y1 − y2

x1 − x2
for (x1, y1) 6= (x2, y2),

3x2
1 + 2a2x1 + a4

2y1
for (x1, y1) = (x2, y2).

This means that an addition takes 1I+2M+1S while a doubling takes 1I+2M+2S
and one multiplication with the curve parameter a2. It is easy to find an isomorphic
curve with a2 = 0; we assume a2 = 0 for projective and Jacobian coordinates. As
mentioned in Section 1, we assume that curves are sensibly chosen with small curve
parameters; we omit the cost of multiplication by curve parameters, and we omit
the cost of field additions and subtractions. See [3] for complete operation counts
that include these costs.

In this section we present twelve different elliptic-curve coordinate systems
that allow inversion-free addition and inversion-free doubling. We start with sys-
tems that are visibly related to curves in Weierstrass form in the sense that a point
with Z1 = 1 has (X1, Y1) satisfying the Weierstrass equation. These systems are
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projective coordinates, Jacobian coordinates, doubling-oriented Doche/Icart/Kohel
curves, and tripling-oriented Doche/Icart/Kohel curves. We then present Hessian
curves, Edwards curves, Jacobi-quartic curves, and curves given as Jacobi intersec-
tions; these forms start with different defining equations.

For each of these systems we give the curve equation, explain how points are
represented, state the neutral element of the group law, state a negation formula,
and present an explicit map to Weierstrass form. We also state, in Tables 2.1 and
2.2, the number of field inversions, field multiplications, and field squarings for each
of these systems for each of the following operations:

• ADD is the cost of a general addition.
• reADD is the cost of a readdition, i.e., an addition in which one of the

summands has been added before. A readdition saves time when it reuses
cached results from the previous addition.

• mADD is the cost of a mixed addition, i.e., an addition in which Z2 is
known to be 1.

• mmADD is the cost of an addition in which both Z1 and Z2 are known
to be 1.

• DBL is the cost of a doubling, i.e., an addition in which both inputs are
known to be equal.

• mDBL is the cost of a doubling in which Z1 is known to be 1.
• SCALE is the cost of scaling a point to obtain Z1 = 1. This cost always

includes I, the cost of a field inversion.
• xSCALE is the cost of scaling an extra point, so simultaneously scaling m

points uses 1 SCALE and m−1 xSCALE. “Montgomery’s trick” computes
1/Z1 and 1/Z2 as Z2(1/Z1Z2) and Z1(1/Z1Z2), using 3M+ I rather than
2I, so xSCALE is I− 3M smaller than SCALE.

Our “Explicit-Formulas Database” (EFD) [3] is a collection of explicit formulas
for these operations, justifying the operation counts in Tables 2.1 and 2.2. (The
EFD also contains formulas for triplings in many coordinate systems; see [2] for
an analysis of the importance of triplings.) The EFD contains the best formulas
we could find in the literature. It also contains many additional speedups that we
found and that are published only in the EFD.

The EFD is updated regularly to include the latest and fastest formulas. This
implies that the tables in this paper reflect our current knowledge but are subject
to change. The strategies we used to generate the tables and graphs are completely
modular and can be applied to modified counts. We plan to integrate this paper’s
tables and graphs into the EFD so that they are updated automatically.

Projective coordinates. A point (x, y) on a Weierstrass-form elliptic curve
y2 = x3+a4x+a6 is represented as (X : Y : Z) satisfying Y 2Z = X3+a4XZ2+a6Z

3

and (x, y) = (X/Z, Y/Z). Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.
The negative of (X : Y : Z) is (X : −Y : Z). The neutral element is represented
as (0 : 1 : 0). The group operation is directly related to that in affine Weierstrass
form.

Chudnovsky and Chudnovsky in [10, formulas (4.4i) and (4.4ii)] presented ex-
plicit formulas for group operations in projective coordinates. Those formulas are
still state-of-the-art except for some S−M tradeoffs, replacing multiplications with
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Table 2.1. Cost of addition, readdition, etc. in various elliptic-
curve coordinate systems

Curve shape ADD reADD mADD mmADD
2DIK 12M + 5S 12M + 5S 8M + 4S 4M + 4S
3DIK 11M + 6S 10M + 6S 7M + 4S 4M + 2S
Edwards 10M + 1S 10M + 1S 9M + 1S 6M + 1S
ExtJQuartic 8M + 3S 8M + 3S 7M + 3S 5M + 4S
Hessian 12M + 0S 12M + 0S 10M + 0S 8M + 0S
InvEdwards 9M + 1S 9M + 1S 8M + 1S 7M + 0S
JacIntersect 13M + 2S 11M + 2S 11M + 2S 8M + 2S
Jacobian 11M + 5S 10M + 4S 7M + 4S 4M + 2S
Jacobian-3 11M + 5S 10M + 4S 7M + 4S 4M + 2S
JQuartic 10M + 3S 9M + 3S 8M + 3S 5M + 2S
Projective 12M + 2S 12M + 2S 9M + 2S 5M + 2S
Projective-3 12M + 2S 12M + 2S 9M + 2S 5M + 2S
Std-Jacobian 12M + 4S 11M + 3S 8M + 3S 4M + 2S

Table 2.2. Cost of doubling and scaling in various elliptic-curve
coordinate systems

Curve shape DBL mDBL SCALE xSCALE
2DIK 2M + 5S 1M + 5S 1I + 2M + 1S 5M + 1S
3DIK 2M + 7S 1M + 5S 1I + 3M + 1S 6M + 1S
Edwards 3M + 4S 3M + 3S 1I + 2M + 0S 5M + 0S
ExtJQuartic 3M + 4S 1M + 6S 1I + 2M + 1S 5M + 1S
Hessian 7M + 1S 3M + 3S 1I + 2M + 0S 5M + 0S
InvEdwards 3M + 4S 3M + 3S 1I + 2M + 0S 5M + 0S
JacIntersect 3M + 4S 2M + 4S 1I + 3M + 0S 6M + 0S
Jacobian 1M + 8S 1M + 5S 1I + 3M + 1S 6M + 1S
Jacobian-3 3M + 5S 1M + 5S 1I + 3M + 1S 6M + 1S
JQuartic 2M + 6S 1M + 4S 1I + 2M + 1S 5M + 1S
Projective 5M + 6S 3M + 5S 1I + 2M + 0S 5M + 0S
Projective-3 7M + 3S 3M + 5S 1I + 2M + 0S 5M + 0S
Std-Jacobian 3M + 6S 2M + 4S 1I + 3M + 1S 6M + 1S

squarings. We denote this system by “Projective” in our tables, and in principle
also in our graphs, but the system is so slow that it is beyond the top of the graphs.

Doubling is faster if a4 = −3. This choice includes about half of all isomorphism
classes of elliptic curves over a finite field, and almost all isogeny classes; see [9].
We denote this system with a4 = −3 by “Projective-3.”

Jacobian coordinates. A point (x, y) on an elliptic curve y2 = x3 +a4x+a6

is represented as (X : Y : Z) satisfying Y 2 = X3 + a4XZ4 + a6Z
6 and (x, y) =

(X/Z2, Y/Z3). Here (X : Y : Z) = (λ2X : λ3Y : λZ) for all nonzero λ. The
negative of (X : Y : Z) is (X : −Y : Z). The neutral element is represented as
(1 : 1 : 0). The group operation is directly related to that in affine Weierstrass
form.
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Chudnovsky and Chudnovsky in [10, formulas (4.2ii) and (4.3i’)] presented
explicit formulas for group operations in Jacobian coordinates. Those formulas are
still state-of-the-art except for some S−M tradeoffs. In the tables and graphs we
denote this system by “Jacobian.”

As in projective coordinates, doubling is faster if a4 = −3. This choice includes
about half of all isomorphism classes of elliptic curves over a finite field. We denote
this system with a4 = −3 by “Jacobian-3.”

To demonstrate the importance of optimized formulas, our graphs also include
“Std-Jacobian,” the operation counts for Jacobian coordinates appearing in [12,
Section 2.3] and in many subsequent papers. We encourage implementors to copy
the latest formulas from the EFD rather than using obsolete formulas.

Some papers describe readdition in Jacobian coordinates as “addition in Chud-
novsky coordinates.” The concept of readditions allows us to avoid treating “Chud-
novsky coordinates” separately.

Doubling-oriented Doche/Icart/Kohel curves. A point (x, y) on an el-
liptic curve y2 = x3 + ax2 + 16ax is represented as (X : Y : Z : Z2) satisfying
Y 2 = ZX3 +aZ2X2 +16aZ3X and (x, y) = (X/Z, Y/Z2). Here (X : Y : Z : Z2) =
(λX : λ2Y : λZ : λ2Z2) for all nonzero λ. The negative of (X : Y : Z : Z2) is
(X : −Y : Z : Z2). The neutral element is represented as (1 : 0 : 0). The group
operation is directly related to that in affine Weierstrass form. Doubling is sped up
considerably: it is computed as the composition of a 2-isogeny and its dual.

Fast doubling formulas for these curves, and mixed-addition formulas, were
introduced by Doche, Icart, and Kohel in [16, Section 3.1]. We found some S−M
tradeoffs in these formulas and included the improved formulas in the EFD. We
also developed general addition formulas and included those in the EFD. In the
tables and graphs we denote this system by “2DIK.”

Tripling-oriented Doche/Icart/Kohel curves. A point (x, y) on an ellip-
tic curve y2 = x3 + 3a(x + 1)2 is represented as (X : Y : Z : Z2) satisfying
Y 2 = X3 + 3aZ2(X + Z2)2 and (x, y) = (X/Z2, Y/Z3). Here (X : Y : Z : Z2) =
(λ2X : λ3Y : λZ : λ2Z2) for all nonzero λ. The negative of (X : Y : Z : Z2) is
(X : −Y : Z : Z2). The neutral element is represented as (1 : 1 : 0 : 0). The group
operation is directly related to that in affine Weierstrass form. Tripling is sped up
considerably through the use of isogenies of degree 3.

Fast tripling formulas for these curves, and mixed-addition formulas, were in-
troduced by Doche, Icart, and Kohel in [16, Section 3.2]. The doubling formulas
in [16] are incorrect; corrected formulas appear in our paper [2, Section 2] with
Birkner and Peters. We also found an S − M tradeoff and derived formulas for
general additions. In the tables and graphs we denote this system by “3DIK.”

Montgomery coordinates. A point (x, y) on an elliptic curve by2 = x3 +
ax2 + x is represented as (X : Z) satisfying x = X/Z.

This representation is not compatible with addition and is not included in our
tables. It loses information: observe that (X : Z) also represents the point (x,−y).
However, this representation does allow scalar multiplication P 7→ nP . Formulas
introduced by Montgomery in [28, Section 10.3.1] use only 5M+4S for each bit of
n. In the graphs we denote this system by “Montgomery.”
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Jacobi intersections. A point (s, c, d) on an elliptic curve s2 + c2 = 1, as2 +
d2 = 1 is represented as (S : C : D : Z) satisfying S2 + C2 = Z2, aS2 + D2 = Z2

and (s, c, d) = (S/Z, C/Z, D/Z). Here (S : C : D : Z) = (λS : λC : λD : λZ) for
all nonzero λ. The negative of (S : C : D : Z) is (−S : C : D : Z). The neutral
element (0, 1, 1) is represented as (0 : 1 : 1 : 1).

The Jacobi intersection of s2 + c2 = 1, as2 +d2 = 1 is birationally equivalent to
the Weierstrass-form elliptic curve y2 = x3 + (2− a)x2 + (1− a)x. A typical point
(s, c, d) on the Jacobi intersection corresponds to the point (x, y) on the Weierstrass
curve defined by x = (d−1)(1−a)/p and y = s(1−a)a/p where p = ca−d+1−a.

Chudnovsky and Chudnovsky in [10, formulas (4.9i) and (4.9ii)] presented fast
doubling and addition formulas for Jacobi intersections. Liardet and Smart in [26]
presented faster formulas. Slightly faster formulas, with an S−M tradeoff, appear
in the EFD. In the tables and graphs we denote this system by “JacIntersect.”

Jacobi quartics. A point (x, y) on an elliptic curve y2 = x4 + 2ax2 + 1 is
represented as (X : Y : Z) satisfying Y 2 = X4 + 2aX2Z2 + Z4 and (x, y) =
(X/Z, Y/Z2). Here (X : Y : Z) = (λX : λ2Y : λZ) for all nonzero λ. The negative
of (X : Y : Z) is (−X : Y : Z). The neutral element (0, 1) is represented as
(0 : 1 : 1).

The Jacobi-quartic elliptic curve y2 = x4 + 2ax2 + 1 is birationally equivalent
to the Weierstrass-form elliptic curve 2v2 = u3 − 2au2 + (a2 − 1)u. A typical point
(x, y) on the Jacobi quartic corresponds to the point (u, v) on the Weierstrass curve
defined by u = a + (y + 1)/x2 and v = u/x.

Billet and Joye in [6, Section 3], citing Whittaker and Watson [34], presented
addition formulas and doubling formulas for Jacobi quartics. (Chudnovsky and
Chudnovsky in [10, formulas (4.10i) et seq.] had stated formulas for computing on
curves of this form, but they placed the neutral element at infinity and obtained
slower formulas.) A flurry of speedups have been introduced this year by Duquesne
in [18], by Hisil, Carter, and Dawson in [22], and by Feng and Wu in unpublished
work.

Extended coordinates (X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2) save time. This
was pointed out by Duquesne, modulo minor issues such as the 2 in 2XZ. The
speed records in the EFD for these coordinates are from Hisil, Carter, and Dawson
for doubling and from Duquesne for addition, with an S−M tradeoff from us. In
the tables and graphs we denote this system by “ExtJQuartic.”

For the original coordinates (X : Y : Z), the speed records in the EFD are from
Feng and Wu for doubling and from Billet and Joye for addition. In the tables and
graphs we denote this system by “JQuartic.”

Hessian curves. A point (x, y) on an elliptic curve x3 + y3 + 1 = 3dxy is
represented as (X : Y : Z) satisfying X3 + Y 3 + Z3 = 3dXY Z and (x, y) =
(X/Z, Y/Z). Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ. The negative of
(X : Y : Z) is (Y : X : Z). The neutral element is represented as (1 : −1 : 0).

A Hessian-form elliptic curve x3+y3+1 = 3dxy is birationally equivalent to the
Weierstrass-form elliptic curve v2 = u3−27d(d3 +8)u+54(d6−20d3−8). A typical
point (x, y) on the Hessian curve corresponds to the point (u, v) on the Weierstrass
curve defined by u = p− 9d2 and v = 3p(y − x) where p = 12(d3 − 1)/(d + x + y).

Chudnovsky and Chudnovsky in [10, formulas (4.20) et seq.] study the Hessian
form for elliptic curves and give explicit formulas, which they credit to Cauchy and
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Sylvester. Hisil, Carter, and Dawson in [22] give faster formulas for doublings. In
the tables and graphs we denote this system by “Hessian.”

Edwards curves. A point (x, y) on an elliptic curve x2 + y2 = 1 + dx2y2 is
represented as (X : Y : Z) satisfying (X2 + Y 2)Z2 = Z4 + dX2Y 2 and (x, y) =
(X/Z, Y/Z). Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ. The negative of
(X : Y : Z) is (−X : Y : Z). The neutral element (0, 1) is represented as (0 : 1 : 1).

The Edwards-form elliptic curve x2+y2 = 1+dx2y2 is birationally equivalent to
the Montgomery-form elliptic curve (1/e)v2 = u3 +(4/e−2)u2 +u where e = 1−d.
A point (x, y) on the Edwards curve, with nonzero x, corresponds to the point (u, v)
on the Montgomery curve defined by u = (1 + y)/(1− y) and v = 2u/x.

This normal form for elliptic curves was introduced by Edwards in [19], gener-
alizing from one curve studied by Euler and Gauss. The Edwards addition law in
affine coordinates is given by

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

Our paper [4] studied the projective version and introduced fast explicit formulas
for all the group operations used in this paper. In the tables and graphs we denote
this system by “Edwards.”

Inverted Edwards coordinates. A point (x, y) on an elliptic curve x2+y2 =
1 + dx2y2 is represented as (X : Y : Z) satisfying (X2 + Y 2)Z2 = X2Y 2 + dZ4

and (x, y) = (Z/X,Z/Y ). Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.
This representation does not cover the points (0,±1) and (±1, 0). The negative of
(X : Y : Z) is (−X : Y : Z). The neutral element (0, 1) is represented by (1, 0, 0).

We introduced inverted Edwards coordinates in [5] as a different coordinate
system for Edwards curves. In the tables and graphs we denote this system by
“InvEdwards.”

3. Fast scalar multiplication

This section defines, for each positive integer n and each m ∈ {3, 5, 7, 9, . . .},
a particular “addition-subtraction chain” Cm(n). This chain can be viewed as
a function that computes nP given a point P . The extra parameter m is the
“maximum precomputed multiple” in Cm(n); if m is chosen sensibly then Cm(n)
has very few additions, subtractions, and doublings.

For each m ∈ {3, 5, . . . , 39} and each ` ∈ {160, 256, 512}, our software averages
the cost of this chain Cm(n) for 100000 uniform random `-bit integers n, and then
identifies the choice of m that minimizes this average. The optimum m depends
not only on ` but also on the definition of “cost.” In particular, Table 4.1, Table
4.2, and Table 4.3 show that the optimum m depends on the choice of inversion
strategy discussed in Section 4 and on the elliptic-curve coordinate system discussed
in Section 2.

This chain Cm(n) is a state-of-the-art combination of
• the “window” idea introduced by Brauer in [8],
• the “sliding window” idea introduced by Thurber in [33],
• the obvious “signed window” idea for groups where subtraction is as easy

as addition,
• the “fractional window” idea introduced by Möller in [27, Section 5], and
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• a few minor tweaks.
We do not claim any novelty for the ideas here. Our goal in this section is to state
for the record—and for lack of a suitable reference—what we did in our experiments.

We are not aware of any noticeably better chains using additions, subtrac-
tions, and doublings. For some coordinate systems there are better chains using
additions, subtractions, doublings, and triplings; these “double-base” chains with
precomputations were introduced by Doche and Imbert in [17], building on an idea
by Dimitrov, Imbert, and Mishra in [14], and were further improved in our recent
paper [2] with Birkner and Peters. The optimizations discussed in Section 4 of this
paper can be applied to the best chains identified in [2].

Definition of Cm(n): the typical cases. If n is even, and not covered by
the base cases discussed below, then Cm(n) is the chain

Cm(n/2);n = 2(n/2).

In other words, we compute (n/2)P recursively and then double (n/2)P to obtain
nP .

If n is odd, and not covered by the base cases discussed below, then Cm(n) is
the chain

Cm(n− r);n = (n− r) + (r).

Here r ∈ {−m, . . . ,−3,−1, 1, 3, . . . ,m− 2,m} is chosen to maximize the maximal
power of 2 dividing n − r. (The base cases guarantee that Cm(n − r) contains
1, 3, . . . ,m − 2,m. See below.) In other words, we compute (n − r)P recursively
and then add rP to it to obtain nP . If r is negative then we actually subtract
(−r)P from (n− r)P ; from now on we ignore the distinction between subtractions
and additions.

Definition of Cm(n): the base cases. If n ∈ {1, 2, 3, 5, . . . ,m− 2,m} then
Cm(n) is the chain

1; 2 = 2(1); 3 = (2) + (1); 5 = (3) + (2); . . . ;m = (m− 2) + (2).

These (m + 1)/2 additions are called precomputations; every Cm(n) starts with
the same precomputations.

If n = m + 2 then Cm(n) is the chain

Cm(m);n = (m) + (2).

If m + 4 ≤ n ≤ 3m− 2 and n mod 6 = 1 then Cm(n) is the chain

Cm(m);
2n + 4

3
= 2

(
n + 2

3

)
;n =

(
2n + 4

3

)
+

(
n− 4

3

)
.

If m + 4 ≤ n ≤ 3m and n mod 6 = 3 then Cm(n) is the chain

Cm(m);
2n

3
= 2

(n

3

)
;n =

(
2n

3

)
+

(n

3

)
.

This case could be computed more efficiently with dedicated triplings.
If m + 4 ≤ n ≤ 3m− 4 and n mod 6 = 5 then Cm(n) is the chain

Cm(m);
2n− 4

3
= 2

(
n− 2

3

)
;n =

(
2n− 4

3

)
+

(
n + 4

3

)
.
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Finally, if 4 ≤ n ≤ 2m− 2 and n mod 4 = 0 then Cm(n) is the chain

Cm(m);n =
(

n− 2
2

)
+

(
n + 2

2

)
.

It might seem easier to obtain n as 2(n/2), but both n/2 − 1 and n/2 + 1 are in
Cm(m) while n/2 is not; the cost of obtaining n/2 generally outweighs the difference
in costs between an addition and a doubling.

A numerical example. The chain C5(314159) is

1; 2 = 2(1); 3 = (2) + (1); 5 = (3) + (2); 10 = 2(5);

20 = 2(10); 40 = 2(20); 80 = 2(40); 77 = (80)− (3);

154 = 2(77); 308 = 2(154); 616 = 2(308); 1232 = 2(616);

1227 = (1232)− (5); 2454 = 2(1227); 4908 = 2(2454);

9816 = 2(4908); 19632 = 2(9816); 19635 = (19632) + (3);

39270 = 2(19635); 78540 = 2(39270); 157080 = 2(78540);

314160 = 2(157080); 314159 = (314160)− (1).

This chain specifies a computation of 314159P from P with 6 additions and
17 doublings. The precomputation doubles P to obtain 2P , then adds P to 2P to
obtain 3P , then adds 2P to 3P to obtain 5P . The main computation doubles 5P
to obtain 10P , doubles 10P to obtain 20P , etc.

4. Using inversions

The chain Cm(n) defined in Section 3 specifies a computation of nP that be-
gins by precomputing 2P, 3P, 5P, . . . ,mP . This section explains several different
strategies for precomputing 2P, 3P, 5P, . . . ,mP .

We always assume that P is given in affine form (Z-coordinate 1) in the coordi-
nate system under consideration. Additions involving P are then mixed additions.
Additions involving the other precomputed points are not mixed additions — unless
we use inversions to convert those points to affine form.

No inversions. The simplest strategy is to compute 2P by doubling P , then
3P by adding 2P to P , then 5P by readding 2P to 3P , then 7P by readding 2P
to 5P , then 9P by readding 2P to 7P , etc., without any inversions. This strategy
involves 1 mDBL, 1 mADD, and (m− 3)/2 reADD.

The rest of the scalar multiplication frequently adds these precomputed points
P, 3P, 5P, . . . ,mP to other points. Each addition involving P is 1 mADD; the
other additions are reADD, except that the first addition involving mP is usually
an ADD.

For example, for ` = 512 and m = 29, we tried 100000 uniform random integers
n ∈

{
0, 1, . . . , 2512 − 1

}
, and found that Cm(n) used on average 1 mDBL, 505.50

DBL, 10.22 mADD, 0.90 ADD, and 77.41 reADD.

One inversion. The “invert {m}” strategy is to compute 2P, 3P, 5P, . . . ,mP
exactly as above, and then convert 3P, 5P, . . . ,mP to affine coordinates.

The cost of this conversion is 1 SCALE and (m − 3)/2 xSCALE. The benefit
of this conversion is that the subsequent additions involving 3P, 5P, . . . ,mP are
mADD instead of reADD.
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For example, for ` = 512 and m = 29, we found that Cm(n) used on average 1
SCALE, 13 xSCALE, 1.36 mDBL, 505.14 DBL, 0.62 mmADD, 74.92 mADD, and
13 reADD. The benefit in this case is, approximately, that 64 reADD were replaced
by 64 mADD; this benefit outweighs the cost of 1 SCALE and 13 xSCALE if I/M
is small.

The exact I/M break-even point, the point below which invert-{m} speeds up
the scalar multiplication, depends on the coordinate system and on `. Figure 1.3
shows the number of multiplications per bit for ` = 512 in all systems considered
in this paper. The right-most bend of each graph happens when I/M is at the
break-even point. The exact data can be found in Table 4.3 which also states the
optimal value of m. Examples: For 2DIK the benefits of mADD over reADD are so
large that for 1I ≤ 263.2M one inversion should be used to scale the precomputed
points. For Hessian the break-even point is at 1I = 72M. For Edwards, for all
realistic I/M ratios, even one inversion is not worthwhile.

Dahmen, Okeya, and Schepers in [13] proposed a different strategy to compute
3P, 5P, . . . ,mP in affine coordinates using a total of 1I+(5m−6)M+(2m+2)S. We
use this “DOS” strategy for Jacobian and Jacobian-3, as in [13], and for Projective
and Projective-3. We have not yet explored the extent to which similar strategies
can be used for other coordinate systems.

DOS reduces the cost of obtaining the precomputed points in affine coordinates.
This is reflected in our results. Consider, for example, the graphs in Figure 1.3 for
` = 512. The graph for Jacobian (which uses DOS) has its right-most bend at
a much higher I/M ratio than that of Jacobian-O (which uses invert-{m}). This
implies that the number of multiplications per bit is decreasing with decreasing I for
1I ≤ 226.8M while this effect happens for Jacobian-O only for 1I ≤ 131.1M. The
same observation holds for Jacobian-3, Jacobian-3-O, Projective, and Projective-3.

Two inversions. The “invert {2,m}” strategy computes 2P ; converts 2P to
affine coordinates; computes 3P, 5P, . . . ,mP ; and converts 3P, 5P, . . . ,mP to affine
coordinates.

The cost of the conversion of 2P to affine coordinates is 1 SCALE. The ben-
efit of this conversion is that the 1 mADD and (m − 3)/2 reADD to compute
3P, 5P, . . . ,mP are replaced by 1 mmADD and (m− 3)/2 mADD.

For example, for ` = 512 and m = 29, we found that Cm(n) used on average 2
SCALE, 13 xSCALE, 1.36 mDBL, 505.14 DBL, 1.64 mmADD, and 86.92 mADD.
The benefit of invert-{2,m} over invert-{m} is, approximately, that 13 reADD were
replaced by 13 mADD; this benefit outweighs the cost of 1 SCALE if I/M is very
small.

The break-even point where invert-{2,m} speeds up the scalar multiplication
again depends on the coordinate system and `. Consider, for example, Figure 1.3
with ` = 512. The 2DIK graph is horizontal at the right side of the figure, bends
downwards when I/M drops to 263.2, and bends downwards again when I/M drops
to 40.1; this second bend happens when I/M is small enough to reach the break-
even point between invert-{m} and invert-{2,m}. For Hessian the break-even point
is at 1I = 20.4M. For all realistic I/M ratios invert-{2,m} is never better than
DOS.

Three inversions. The “invert {2, 2b(m + 1)/4c,m}” strategy first computes
2P ; converts 2P to affine coordinates; computes 3P, 5P, . . . , (2c − 1)P where c =
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b(m + 1)/4c; uses an extra addition to compute 2cP ; converts 3P, 5P, . . . , (2c−1)P,
2cP to affine coordinates; computes (2c + 1)P, (2c + 3)P, . . . , (4c − 1)P by adding
P, 3P, . . . , (2c − 1)P to 2cP ; computes mP if m = 4c + 1; and converts (2c + 1)P,
(2c + 3)P, . . . ,mP to affine coordinates.

The cost of this strategy, compared to the previous strategy, is 1 mADD to
compute 2cP , plus 1 SCALE for the intermediate conversion to affine coordinates.
(Sometimes the 1 mADD can be replaced by 1 DBL; we have not included this
tweak yet.) The benefit of this conversion is that c mADD for the computation of
(2c + 1)P, (2c + 3)P, . . . , (4c− 1)P are replaced by c mmADD.

For example, for ` = 512 and m = 29, we found that Cm(n) used on aver-
age 3 SCALE, 13 xSCALE, 1.36 mDBL, 505.14 DBL, 8.64 mmADD, and 80.90
mADD. The benefit in this case is, approximately, that 7 mADD were replaced by
7 mmADD; this benefit can outweigh the cost of 1 mADD and 1 SCALE if I/M is
extremely small.

Only 2DIK and 3DIK profit from invert-{2, 2b(m + 1)/4c,m} for ` = 512 and
only for very small I/M-ratios. For ` = 256 or smaller no system benefits from
invert-{2, 2b(m + 1)/4c,m}. For larger values of ` this strategy becomes more in-
teresting.

More inversions. One could articulate a further strategy using 4 inversions,
e.g., “invert-{2, 2b(m + 1)/8c, 2b(m + 1)/4c,m}” that computes 2P ; converts 2P
to affine coordinates; computes 3P, 5P, . . . , (2b− 1)P where b = b(m + 1)/8c; uses
an extra addition to compute 2bP ; etc. The extra benefit here is half as large as
the benefit of invert-{2, 2b(m + 1)/4c,m} over invert-{2,m}, while the extra cost
is just as large, but if ` is gigantic then the benefit outweighs the cost.

When m+1 is a power of 2, adding more and more inversions in the same way
eventually produces the “invert-{2, 4, 8, 16, . . . ,m}” strategy introduced by Cohen,
Miyaji, and Ono in [12].

History. As far as we know, the first study of scalar multiplications including
the costs of the precomputations was done by Cohen, Miyaji, and Ono in [12]. They
consider only two options for the precomputations: the no-inversion strategy and
their new strategy using lg(m+1) inversions. The invert-{m} strategy is considered
by Doche and Lange in [15]. The first mention of invert-{2,m} that we could find
was by Elmegaard-Fessel in [20]. The DOS strategy was developed by Dahmen,
Okeya, and Schepers in [13]; it is better than invert-{m} whenever it is applicable.

The invert-{2, 2b(m + 1)/4c,m} strategy that we presented for 3 inversions is
based on extensive computer experiments: we allowed the computer to systemati-
cally explore a much wider space of strategies and to identify the best strategies. We
have not located this strategy, or any other strategies between 3 and lg(m + 1)− 1
inversions, in the literature.
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Table 4.1. Optimal parameters for 160-bit scalars for each curve
shape and each inversion strategy, assuming S/M = 0.8.

Bits Curve shape Inversions m Multiplications and squarings I/M
160 2DIK 0I 13 684.8M + 939.6S ≈ 1436.5M large
160 2DIK 1I 7 609.4M + 927.7S ≈ 1351.6M ≤ 84.9
160 2DIK 2I 9 598.9M + 923.4S ≈ 1337.6M ≤ 14.0
160 2DIK 3I 9 593.9M + 929.4S ≈ 1337.5M
160 3DIK 0I 13 625.8M + 1275.0S ≈ 1645.8M large
160 3DIK 1I 7 576.0M + 1238.9S ≈ 1567.1M ≤ 78.7
160 3DIK 2I 9 571.0M + 1229.7S ≈ 1554.8M ≤ 12.3
160 3DIK 3I 9 569.1M + 1231.7S ≈ 1554.5M
160 Edwards 0I 13 797.2M + 655.5S ≈ 1321.6M large
160 Edwards 1I 9 796.5M + 657.6S ≈ 1322.6M
160 Edwards 2I 9 792.4M + 657.6S ≈ 1318.5M
160 Edwards 3I 9 791.5M + 660.6S ≈ 1320.0M
160 ExtJQuartic 0I 13 727.6M + 726.1S ≈ 1308.5M large
160 ExtJQuartic 1I 9 725.3M + 735.3S ≈ 1313.5M
160 ExtJQuartic 2I 9 722.2M + 737.3S ≈ 1312.1M
160 ExtJQuartic 3I 9 721.3M + 746.3S ≈ 1318.3M
160 Hessian 0I 13 1475.7M + 157.7S ≈ 1601.9M large
160 Hessian 1I 9 1453.2M + 159.1S ≈ 1580.5M ≤ 21.4
160 Hessian 2I 11 1447.4M + 158.8S ≈ 1574.4M
160 Hessian 3I 9 1448.2M + 162.1S ≈ 1577.9M
160 InvEdwards 0I 13 763.4M + 655.5S ≈ 1287.8M large
160 InvEdwards 1I 9 763.1M + 657.1S ≈ 1288.8M
160 InvEdwards 2I 9 761.1M + 656.0S ≈ 1285.9M
160 InvEdwards 3I 9 764.2M + 657.1S ≈ 1289.8M
160 JacIntersect 0I 15 837.9M + 689.3S ≈ 1389.4M large
160 JacIntersect 1I 9 864.8M + 693.5S ≈ 1419.6M
160 JacIntersect 2I 9 864.7M + 693.4S ≈ 1419.5M
160 JacIntersect 3I 9 863.8M + 697.5S ≈ 1421.8M
160 Jacobian 0I 13 471.1M + 1378.4S ≈ 1573.8M large
160 Jacobian 1I 15 402.7M + 1366.4S ≈ 1495.8M ≤ 78.0
160 Jacobian 2I 9 416.3M + 1384.4S ≈ 1523.8M
160 Jacobian 3I 9 414.4M + 1386.4S ≈ 1523.5M
160 Jacobian-3 0I 13 780.4M + 914.3S ≈ 1511.9M large
160 Jacobian-3 1I 15 710.9M + 904.1S ≈ 1434.1M ≤ 77.8
160 Jacobian-3 2I 9 725.7M + 920.3S ≈ 1462.0M
160 Jacobian-3 3I 9 723.8M + 922.4S ≈ 1461.6M
160 JQuartic 0I 13 607.5M + 1033.5S ≈ 1434.2M large
160 JQuartic 1I 9 604.5M + 1040.8S ≈ 1437.1M
160 JQuartic 2I 9 600.4M + 1040.7S ≈ 1432.9M
160 JQuartic 3I 9 597.5M + 1043.7S ≈ 1432.4M
160 Projective 0I 13 1158.6M + 1000.7S ≈ 1959.2M large
160 Projective 1I 15 1078.7M + 1012.0S ≈ 1888.2M ≤ 71.0
160 Projective 2I 13 1102.3M + 1000.2S ≈ 1902.5M
160 Projective 3I 15 1100.5M + 1000.9S ≈ 1901.2M
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Table 4.2. Optimal parameters for 256-bit scalars for each curve
shape and each inversion strategy, assuming S/M = 0.8.

Bits Curve shape Inversions m Multiplications and squarings I/M
256 2DIK 0I 13 1060.5M + 1498.9S ≈ 2259.7M large
256 2DIK 1I 13 950.7M + 1471.3S ≈ 2127.8M ≤ 131.9
256 2DIK 2I 15 926.8M + 1464.2S ≈ 2098.2M ≤ 29.6
256 2DIK 3I 15 920.7M + 1469.2S ≈ 2096.1M
256 3DIK 0I 13 972.3M + 2038.8S ≈ 2603.3M large
256 3DIK 1I 13 901.7M + 1975.8S ≈ 2482.4M ≤ 120.9
256 3DIK 2I 15 886.7M + 1961.2S ≈ 2455.6M ≤ 26.8
256 3DIK 3I 15 884.6M + 1958.2S ≈ 2451.2M
256 Edwards 0I 17 1245.6M + 1053.6S ≈ 2088.5M large
256 Edwards 1I 15 1237.9M + 1054.2S ≈ 2081.3M
256 Edwards 2I 15 1231.0M + 1054.3S ≈ 2074.4M
256 Edwards 3I 15 1229.9M + 1055.2S ≈ 2074.1M
256 ExtJQuartic 0I 17 1144.0M + 1156.2S ≈ 2068.9M large
256 ExtJQuartic 1I 15 1136.4M + 1165.4S ≈ 2068.7M
256 ExtJQuartic 2I 15 1130.4M + 1167.4S ≈ 2064.3M
256 ExtJQuartic 3I 15 1131.4M + 1175.4S ≈ 2071.7M
256 Hessian 0I 17 2339.9M + 253.2S ≈ 2542.4M large
256 Hessian 1I 15 2294.6M + 254.2S ≈ 2498.0M ≤ 44.4
256 Hessian 2I 15 2282.7M + 254.3S ≈ 2486.1M ≤ 11.9
256 Hessian 3I 15 2286.6M + 254.3S ≈ 2490.0M
256 InvEdwards 0I 17 1195.8M + 1053.6S ≈ 2038.7M large
256 InvEdwards 1I 15 1189.4M + 1053.6S ≈ 2032.3M
256 InvEdwards 2I 15 1184.5M + 1052.6S ≈ 2026.6M
256 InvEdwards 3I 15 1190.4M + 1049.6S ≈ 2030.1M
256 JacIntersect 0I 17 1301.9M + 1104.4S ≈ 2185.4M large
256 JacIntersect 1I 15 1337.0M + 1105.3S ≈ 2221.2M
256 JacIntersect 2I 15 1337.0M + 1105.3S ≈ 2221.3M
256 JacIntersect 3I 15 1338.9M + 1107.3S ≈ 2224.8M
256 Jacobian 0I 13 721.6M + 2213.2S ≈ 2492.1M large
256 Jacobian 1I 15 610.6M + 2198.3S ≈ 2369.2M ≤ 122.9
256 Jacobian 2I 15 636.6M + 2211.3S ≈ 2405.6M
256 Jacobian 3I 15 634.5M + 2208.3S ≈ 2401.2M
256 Jacobian-3 0I 13 1222.9M + 1461.1S ≈ 2391.8M large
256 Jacobian-3 1I 15 1110.8M + 1448.0S ≈ 2269.2M ≤ 122.6
256 Jacobian-3 2I 15 1136.8M + 1461.0S ≈ 2305.6M
256 Jacobian-3 3I 15 1134.7M + 1458.0S ≈ 2301.1M
256 JQuartic 0I 17 944.3M + 1654.6S ≈ 2268.0M large
256 JQuartic 1I 15 935.4M + 1661.6S ≈ 2264.6M
256 JQuartic 2I 15 928.4M + 1661.6S ≈ 2257.7M
256 JQuartic 3I 15 926.3M + 1661.6S ≈ 2255.6M
256 Projective 0I 13 1826.5M + 1610.1S ≈ 3114.5M large
256 Projective 1I 15 1702.5M + 1619.9S ≈ 2998.4M ≤ 116.1
256 Projective 2I 15 1729.5M + 1606.9S ≈ 3015.1M
256 Projective 3I 15 1724.5M + 1608.9S ≈ 3011.6M
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Table 4.3. Optimal parameters for 512-bit scalars for each curve
shape and each inversion strategy, assuming S/M = 0.8.

Bits Curve shape Inversions m Multiplications and squarings I/M
512 2DIK 0I 29 2033.5M + 2964.9S ≈ 4405.4M large
512 2DIK 1I 15 1806.2M + 2919.9S ≈ 4142.2M ≤ 263.2
512 2DIK 2I 25 1779.1M + 2903.7S ≈ 4102.1M ≤ 40.1
512 2DIK 3I 31 1762.7M + 2906.0S ≈ 4087.6M ≤ 14.5
512 3DIK 0I 29 1867.5M + 4054.2S ≈ 5110.9M large
512 3DIK 1I 15 1715.4M + 3936.9S ≈ 4865.0M ≤ 245.9
512 3DIK 2I 21 1700.1M + 3915.1S ≈ 4832.2M ≤ 32.8
512 3DIK 3I 27 1696.4M + 3900.8S ≈ 4817.0M ≤ 15.2
512 Edwards 0I 29 2394.6M + 2113.5S ≈ 4085.4M large
512 Edwards 1I 21 2388.2M + 2116.8S ≈ 4081.7M
512 Edwards 2I 25 2378.1M + 2114.7S ≈ 4069.9M
512 Edwards 3I 31 2369.4M + 2113.6S ≈ 4060.3M
512 ExtJQuartic 0I 29 2215.5M + 2293.6S ≈ 4050.4M large
512 ExtJQuartic 1I 19 2204.0M + 2313.5S ≈ 4054.8M
512 ExtJQuartic 2I 21 2196.2M + 2314.3S ≈ 4047.7M
512 ExtJQuartic 3I 23 2194.4M + 2323.3S ≈ 4053.1M
512 Hessian 0I 29 4583.4M + 508.5S ≈ 4990.2M large
512 Hessian 1I 19 4510.4M + 509.9S ≈ 4918.2M ≤ 72.0
512 Hessian 2I 25 4490.3M + 509.5S ≈ 4897.8M ≤ 20.4
512 Hessian 3I 31 4488.6M + 509.1S ≈ 4895.9M
512 InvEdwards 0I 29 2306.0M + 2113.5S ≈ 3996.9M large
512 InvEdwards 1I 21 2299.0M + 2116.2S ≈ 3992.0M
512 InvEdwards 2I 25 2292.0M + 2113.1S ≈ 3982.5M
512 InvEdwards 3I 27 2296.5M + 2106.3S ≈ 3981.6M
512 JacIntersect 0I 31 2490.8M + 2202.2S ≈ 4252.6M large
512 JacIntersect 1I 25 2568.6M + 2205.4S ≈ 4332.9M
512 JacIntersect 2I 25 2568.4M + 2205.4S ≈ 4332.7M
512 JacIntersect 3I 31 2563.5M + 2204.2S ≈ 4326.8M
512 Jacobian 0I 29 1362.0M + 4404.0S ≈ 4885.2M large
512 Jacobian 1I 31 1151.2M + 4384.0S ≈ 4658.4M ≤ 226.8
512 Jacobian 2I 21 1194.5M + 4420.7S ≈ 4731.1M
512 Jacobian 3I 27 1191.1M + 4406.1S ≈ 4716.0M
512 Jacobian-3 0I 29 2373.0M + 2887.5S ≈ 4683.0M large
512 Jacobian-3 1I 31 2161.3M + 2868.8S ≈ 4456.3M ≤ 226.7
512 Jacobian-3 2I 21 2205.7M + 2904.0S ≈ 4528.9M
512 Jacobian-3 3I 27 2201.6M + 2890.4S ≈ 4513.9M
512 JQuartic 0I 29 1799.4M + 3302.6S ≈ 4441.5M large
512 JQuartic 1I 21 1789.5M + 3319.5S ≈ 4445.1M
512 JQuartic 2I 25 1780.7M + 3316.7S ≈ 4434.1M
512 JQuartic 3I 31 1772.4M + 3310.9S ≈ 4421.1M
512 Projective 0I 29 3562.2M + 3215.1S ≈ 6134.2M large
512 Projective 1I 31 3332.0M + 3242.7S ≈ 5926.1M ≤ 208.1
512 Projective 2I 27 3387.8M + 3216.0S ≈ 5960.6M
512 Projective 3I 31 3369.9M + 3215.7S ≈ 5942.4M


