
Optimizing double-base elliptic-curve
single-scalar multiplication

Daniel J. Bernstein1, Peter Birkner2, Tanja Lange2, and Christiane Peters2

1 Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
p.birkner@tue.nl, tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. This paper analyzes the best speeds that can be obtained
for single-scalar multiplication with variable base point by combining a
huge range of options:
– many choices of coordinate systems and formulas for individual group

operations, including new formulas for tripling on Edwards curves;
– double-base chains with many different doubling/tripling ratios, in-

cluding standard base-2 chains as an extreme case;
– many precomputation strategies, going beyond Dimitrov, Imbert,

Mishra (Asiacrypt 2005) and Doche and Imbert (Indocrypt 2006).
The analysis takes account of speedups such as S − M tradeoffs and
includes recent advances such as inverted Edwards coordinates.
The main conclusions are as follows. Optimized precomputations and
triplings save time for single-scalar multiplication in Jacobian coordi-
nates, Hessian curves, and tripling-oriented Doche/Icart/Kohel curves.
However, even faster single-scalar multiplication is possible in Jacobi in-
tersections, Edwards curves, extended Jacobi-quartic coordinates, and
inverted Edwards coordinates, thanks to extremely fast doublings and
additions; there is no evidence that double-base chains are worthwhile
for the fastest curves. Inverted Edwards coordinates are the speed leader.

Key words: Edwards curves, double-base number systems, double-base
chains, addition chains, scalar multiplication, tripling, quintupling

1 Introduction

Double-base number systems have been suggested as a way to speed up scalar
multiplication on elliptic curves. The idea is to expand a positive integer n as

* Permanent ID of this document: d721c86c47e3b56834ded945c814b5e0. Date of this
document: 2007.10.28. This work has been supported in part by the National Science
Foundation under grant ITR–0716498. This work has been supported in part by
the European Commission through the IST Programme under Contract IST–2002–
507932 ECRYPT.

2 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

a sum of very few terms ci2ai3bi with ci = 1 or ci = −1, and thus to express
a scalar multiple nP as a sum of very few points ci2ai3biP . Unfortunately, the
time to add these points is only one facet of the time to compute nP ; computing
the points in the first place requires many doublings and triplings. Minimizing
the number of additions is minimizing the wrong cost measure.

At Asiacrypt 2005, Dimitrov, Imbert, and Mishra [11] introduced double-
base chains

∑
ci2ai3bi , where again ci = 1 or −ci = 1, with the new restrictions

a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥ b3 ≥ · · · allowing a Horner-like evaluation
of nP with only a1 doublings and only b1 triplings. But the new restrictions
introduced by double-base chains substantially increase the number of additions.

At Indocrypt 2006, Doche and Imbert [13] improved double-base chains by
introducing an analogue of signed-sliding-window methods, keeping the restric-
tions a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥ b3 ≥ · · · but allowing ci and −ci to
be chosen from a coefficient set S larger than {1}, leading to shorter chains
and thus fewer additions. Doche and Imbert studied in detail the sets {1},
{1, 2, 3, 4, 9}, {1, 2, . . . , 24, 3, . . . , 34}, {1, 5, 7}, {1, 5, 7, 11, 13, 17, 19, 23, 25}. For
each set they counted (experimentally) the number of additions, doublings, and
triplings in their chains, compared these to the number of additions and dou-
blings in the standard single-base sliding-window methods, and concluded that
these new double-base chains save time in scalar multiplication. However, there
are several reasons to question this conclusion:

• The comparison ignores the cost of precomputing all the cP for c ∈ S. These
costs are generally lower for single-base chains, and are incurred for every
scalar multiplication (unless P is reused, in which case there are much faster
scalar-multiplication methods).

• The comparison relies on obsolete addition formulas. For example, [13] uses
mixed-addition formulas that take 8M + 3S: i.e., 8 field multiplications and
3 squarings. Faster formulas are known, taking only 7M + 4S; this speedup
has a larger benefit for single-base chains than for double-base chains.

• The comparison relies on obsolete curve shapes. For example, [13] uses dou-
bling formulas that take 4M+6S, but the standard choice a4 = −3 improves
Jacobian-coordinate doubling to 3M + 5S, again making single-base chains
more attractive. Recent work has produced extremely fast doubling and ad-
dition formulas for several non-Jacobian curve shapes.

In this paper we carry out a much more comprehensive comparison of elliptic-
curve scalar-multiplication methods. We analyze a much wider variety of coor-
dinate systems, including the most recent innovations in curve shapes and the
most recent speedups in addition formulas; see Section 3. In particular, we in-
clude Edwards curves in our comparison; in Section 2 we introduce new fast
tripling formulas for Edwards curves, and in the appendix we introduce quintu-
pling formulas. Our graphs include the obsolete addition formulas for Jacobian
coordinates (“Std-Jac” and “Std-Jac-3”) to show how striking the advantage of
better group operations is. We account for the cost of precomputations, and we
account for the difference in speeds between addition, readdition, and mixed ad-
dition. We include more choices of chain parameters, and in particular identify

Optimizing double-base elliptic-curve single-scalar multiplication 3

better choices of S for double-base chains. We cover additional exponent lengths
of interest in cryptographic applications.

We find, as in [13], that double-base chains achieve significant improvements
for curves in Jacobian coordinates and for tripling-oriented Doche/Icart/Kohel
curves; computing scalar multiples with the {2, 3}-double-base chains is faster
than with the best known single-base chains. For integers of bit-length ` about
0.22` triplings and 0.65` doublings are optimal for curves in Jacobian coordi-
nates; for the Doche/Icart/Kohel curves the optimum is about 0.29` triplings
and 0.54` doublings. For Hessian curves we find similar results; the optimum is
about 0.25` triplings and 0.6` doublings.

On the other hand, for Edwards curves it turns out that the optimum for
base-{2, 3} chains uses very few triplings. This makes the usefulness of double-
base chains for Edwards curves questionable. The same result holds for {2, 5}-
double-base chains. Based on our results we recommend traditional single-base
chains for implementors using Edwards curves. Similar conclusions apply to Ja-
cobi intersections, extended Jacobi-quartic coordinates, and inverted Edwards
coordinates.

In the competition between coordinate systems, inverted Edwards coordi-
nates are the current leader, followed closely by extended Jacobi-quartic coor-
dinates and standard Edwards coordinates, and then by Jacobi intersections.
Jacobian coordinates with a4 = −3, despite double-base chains and all the other
speedups we consider, are slower than Jacobi intersections. Tripling-oriented
Doche/Icart/Kohel curves are competitive with Jacobian coordinates — but not
nearly as impressive as they seemed in [13]. For the full comparison see Section 5.

2 Edwards curves

Edwards [16] introduced a new form for elliptic curves over fields of character-
istic different from 2 and showed that — after an appropriate field extension—
every elliptic curve can be transformed to this normal form. We now briefly
review arithmetic on Edwards curves and then develop new tripling formulas.
Hisil, Carter, and Dawson independently developed essentially the same tripling
formulas; see [18].

Background on Edwards curves. We present Edwards curves in the slightly
generalized version due to Bernstein and Lange [5]. An elliptic curve in Edwards
form, or simply Edwards curve, over a field k is given by an equation

x2 + y2 = 1 + dx2y2, where d ∈ k \ {0, 1}.

Two points (x1, y1) and (x2, y2) are added according to the Edwards addition
law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
. (2.1)

The neutral element of this addition is (0, 1). The inverse of any point (x1, y1)
on E is (−x1, y1). Doubling can be performed with exactly the same formula as

4 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

addition. If d is not a square in k the addition law is complete, i.e., it is defined
for all pairs of input points on the Edwards curve over k and the result matches
the sum of the input points on any birationally equivalent elliptic curve.

Bernstein and Lange [5] study Edwards curves for cryptographic applications
and give efficient explicit formulas for the group operations. To avoid inversions
they work with the homogenized equation in which a point (X1 : Y1 : Z1)
corresponds to the affine point (X1/Z1, Y1/Z1) on the Edwards curve. Their
newer paper [6] proposes using (X1 : Y1 : Z1) to represent (Z1/X1, Z1/Y1).
These inverted Edwards coordinates save 1M in addition. For contrast we refer
to the former as standard Edwards coordinates.

Doubling on Edwards curves. If both inputs are known to be equal the
result of the addition can be obtained using fewer field operations. We briefly
describe how [5] derived the special formulas for doubling from the general ad-
dition law (2.1). The same approach will help in tripling.

Since (x1, y1) is on the Edwards curve one can substitute the coefficient d by
(x2

1 + y2
1 − 1)/(x2

1y
2
1) in the following sum:

(x1, y1), (x1, y1) 7→
(

2x1y1

1 + dx2
1y

2
1

,
y2
1 − x2

1

1− dx2
1y

2
1

)
=

(
2x1y1

x2
1 + y2

1

,
y2
1 − x2

1

2− (x2
1 + y2

1)

)
.

This substitution reduces the degree of the denominator from 4 to 2 which is
reflected in faster doublings.

Tripling on Edwards curves. One can triple a point by first doubling it and
then adding the result to itself. By applying the curve equation as in doubling
we obtain

3(x1, y1) =
(

((x2
1 + y2

1)2 − (2y1)2)
4(x2

1 − 1)x2
1 − (x2

1 − y2
1)2

x1,
((x2

1 + y2
1)2 − (2x1)2)

−4(y2
1 − 1)y2

1 + (x2
1 − y2

1)2
y1

)
.

We present two sets of formulas to do this operation in standard Edwards
coordinates. The first one costs 9M + 4S while the second needs 7M + 7S. If
the S/M ratio is very small, specifically below 2/3, then the second set is better
while for larger ratios the first one is to be preferred.

The explicit formulas were verified to produce the 3-fold of the input point
(X1 : Y1 : Z1) by symbolically computing 3(X1 : Y1 : Z1) using the addition and
doubling formulas from [5] and comparing it with (X3 : Y3 : Z3).

Here are our 9M + 4S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = (2Z1)
2; D = A + B; E = D2; F = 2D · (A−B);

G = E −B · C; H = E −A · C; I = F + H; J = F −G;

X3 = G · J · X1; Y3 = H · I · Y1; Z3 = I · J · Z1.

Here are our 7M + 7S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B; E = D2; F = 2D · (A−B);

K = 4C; L = E −B · K; M = E −A · K; N = F + M ; O = N2; P = F − L;

X3 = 2L · P · X1; Y3 = M · ((N + Y1)
2 −O −B); Z3 = P · ((N + Z1)

2 −O − C).

Appendix A contains formulas for quintupling on Edwards curves.

Optimizing double-base elliptic-curve single-scalar multiplication 5

3 Fast Addition on Elliptic Curves

There is a vast literature on elliptic curves. See [14, 7, 17] for overviews of efficient
group operations on elliptic curves, and [5, Section 6] for an analysis of scalar-
multiplication performance without triplings.

Those overviews are not a satisfactory starting point for our analysis, because
they do not include the most recent improvements in curve shapes and in ad-
dition formulas. Fortunately, all of the latest improvements have been collected
into the Bernstein/Lange “Explicit-Formulas Database” (EFD) [4], with Magma
scripts verifying the correctness of the formulas. For example, this database now
includes our tripling formulas, the tripling formulas from [6] (modeled after ours)
for inverted Edwards coordinates, and the formulas from [18] for other systems.

Counting operations. In Section 5 we assume S = 0.8M, but in this section
we record the costs separately. We ignore costs of the cheaper field operations
such as field additions, field subtractions, and field doublings.

We also ignore the costs of multiplications by curve parameters (for example,
d in Edwards form). We assume that curves are sensibly selected with small
parameters so that these multiplications are easy.

Jacobian coordinates. Let k be a field of characteristic at least 5. Every
elliptic curve over k can then be written in short Weierstrass form E : y2 =
x3 + a4x + a6, a4, a6 ∈ k, where f(x) = x3 + a4x + a6 is squarefree. The set
E(k) of k-rational points of E is the set of tuples (x1, y1) satisfying the equation
together with a point P∞ at infinity.

The most popular representation of an affine point (x1, y1) ∈ E(k) is as
Jacobian coordinates (X1 : Y1 : Z1) satisfying Y 2

1 = X3
1 + a4X1Z

2
1 + a6Z

6
1 and

(x1, y1) = (X1/Z
2
1 , Y1/Z

3
1). An addition of generic points (X1 : Y1 : Z1) and

(X2 : Y2 : Z2) in Jacobian coordinates costs 11M + 5S. A readdition— i.e., an
addition where (X2 : Y2 : Z2) has been added before —costs 10M+ 4S, because
Z2

2 and Z3
2 can be cached and reused. A mixed addition— i.e., an addition where

Z2 is known to be 1 —costs 7M + 4S. A doubling— i.e., an addition where
(X1 : Y1 : Z1) and (X2 : Y2 : Z2) are known to be equal — costs 1M + 8S. A
tripling costs 5M + 10S.

If a4 = −3 then the cost for doubling changes to 3M + 5S and that for
tripling to 7M + 7S. Not every curve can be transformed to allow a4 = −3 but
important examples such as the NIST curves [1] make this choice. We refer to
this case as Jacobian-3.

Most of the literature presents slower formulas producing the same output,
and correspondingly reports higher costs for arithmetic in Jacobian coordinates.
See, for example, [1, Section A.10.4] and the aforementioned overviews. We in-
clude the slower formulas in our experiments to simplify the comparison of our
results to previous results in [13] and [11] and to emphasize the importance of
using faster formulas. We refer to the slower formulas as Std-Jac and Std-Jac-3.

More coordinate systems. Several other representations of elliptic curves have
attracted attention because they offer faster group operations or extra features

6 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

such as unified addition formulas that also work for doublings. Some of these
representations can be reached through isomorphic transformation for any curve
in Weierstrass form while others require, for example, a point of order 4. Our
analysis includes all of the curve shapes listed in the following table:

Curve shape ADD reADD mADD DBL TRI

3DIK 11M + 6S 10M + 6S 7M + 4S 2M + 7S 6M + 6S
Edwards 10M + 1S 10M + 1S 9M + 1S 3M + 4S 9M + 4S
ExtJQuartic 8M + 3S 8M + 3S 7M + 3S 3M + 4S 4M + 11S
Hessian 12M + 0S 12M + 0S 10M + 0S 7M + 1S 8M + 6S
InvEdwards 9M + 1S 9M + 1S 8M + 1S 3M + 4S 9M + 4S
JacIntersect 13M + 2S 13M + 2S 11M + 2S 3M + 4S 4M + 10S
Jacobian 11M + 5S 10M + 4S 7M + 4S 1M + 8S 5M + 10S
Jacobian-3 11M + 5S 10M + 4S 7M + 4S 3M + 5S 7M + 7S
Std-Jac 12M + 4S 11M + 3S 8M + 3S 3M + 6S 9M + 6S
Std-Jac-3 12M + 4S 11M + 3S 8M + 3S 4M + 4S 9M + 6S

The speeds listed here, and the speeds used in our analysis, are the current
speeds in EFD.

“ExtJQuartic” and “Hessian” and “JacIntersect” refer to the latest addition
formulas for Jacobi quartics Y 2 = X4 +2aX2Z2 +Z4, Hessian curves X3 +Y 3 +
Z3 = 3dXY Z, and Jacobi intersections S2 + C2 = T 2, aS2 + D2 = T 2. EFD
takes account of the improvements in [15] and [18].

“3DIK” is an abbreviation for “tripling-oriented Doche/Icart/Kohel curves,”
the curves Y 2 = X3 + a(X + Z2)2Z2 introduced last year in [12]. (The same
paper also introduces doubling-oriented curves that do not have fast additions
or triplings and that are omitted from our comparison.) We note that [12] states
incorrect formulas for doubling. The corrected and faster formulas are:

B = X2
1 ; C = 2a · Z2

1 · (X1 + Z2
1); D = 3(B + C); E = Y 2

1 ; F = E2;
Z3 = (Y1 + Z1)2 − E − Z2

1 ; G = 2((X1 + E)2 −B − F);
X3 = D2 − 3a · Z2

3 − 2G; Y3 = D · (G−X3)− 8F ;

which are now also included in the EFD.

4 Background: Double-Base Chains for Single-Scalar
Multiplication

This section reviews the previous state of the art in double-base chains for com-
puting nP given P .

The non-windowing case. The “base-2” equation

314159P

= 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(P))+P))−P)))+P)+P))−P)))+P)+P))))−P

Optimizing double-base elliptic-curve single-scalar multiplication 7

can be viewed as an algorithm to compute 314159P , starting from P , with a
chain of 18 doublings and 8 additions of P ; here we count subtractions as addi-
tions. One can express this chain more concisely— with an implicit application
of Horner’s rule — as

314159P = 218P + 216P − 214P + 211P + 210P − 28P + 25P + 24P − 20P.

The slightly more complicated “double-base-2-and-3” equation

314159P = 21532P + 21132P + 2831P + 2431P − 2030P

= 3(2(2(2(2(2(2(2(2(3(2(2(2(2(2(2(2(P)))) + P)))) + P)))) + P)))))− P

can be viewed as a better algorithm to compute 314159P , starting from P , with
a chain of 2 triplings, 15 doublings, and 4 additions of P . If 1 tripling has the
same cost as 1 doubling and 1 addition then this chain has the same cost as 17
doublings and 6 additions which is fewer operations than the 18 doublings and
8 additions of P needed in the base-2 expansion.

One can object to this comparison by pointing out that adding mP for m >
1 is more expensive than adding P — typically P is provided in affine form,
allowing a mixed addition of P , while mP requires a more expensive non-mixed
addition—so a tripling is more expensive than a doubling and an addition of
P . But this objection is amply answered by dedicated tripling formulas that are
less expensive than a doubling and an addition. See Sections 2 and 3.

Double-base chains were introduced by Dimitrov, Imbert, and Mishra in a
paper [11] at Asiacrypt 2005. There were several previous “double-base number
system” papers expanding nP in various ways as

∑
ci2ai3biP with ci ∈ {−1, 1};

the critical advance in [11] was to require a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥
b3 ≥ · · · , allowing a straightforward chain of doublings and triplings without the
expensive backtracking that plagued previous papers.

Issues in comparing single bases to double bases. One can object that
the benefit of fast double-base chains is outweighed by the cost of finding those
chains. Perhaps this objection will be answered someday by an optimized algo-
rithm that finds a double-base chain in less time than is saved by applying that
chain. We rely on a simpler answer: we focus on cryptographic applications in
which the same n is used many times (as in [10, Section 3]), allowing the chain
for n to be constructed just once and then reused. Our current software has not
been heavily optimized but takes under a millisecond to compute an expansion
of a cryptographic-size integer n.

A more troubling objection is that the simple base-2 chains described above
were obsolete before the advent of double-base chains. Typical speed-oriented
elliptic-curve software instead uses “sliding window” base-2 chains that use
marginally more temporary storage but considerably fewer additions — see be-
low. Even if double-base chains are faster than obsolete base-2 chains, there is
no reason to believe that they are faster than state-of-the-art sliding-window
base-2 chains. This objection is partly answered by an analogous improvement
to double-base chains —see below —but the literature does not contain a careful
comparison of optimized double-base chains to optimized single-base chains.

8 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

The sliding-windows case. The “sliding-windows base-2” equation

314159P = 2165P − 2117P + 283P + 243P − 20P

= 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(5P)))))− 7P))) + 3P)))) + 3P))))− P

can be viewed as an algorithm to compute 314159P starting from {P, 3P, 5P, 7P}
with a chain of 16 doublings and 4 additions. It can therefore be viewed as
an algorithm to compute 314159P , starting from P , with 17 doublings and 7
additions; this operation count includes the obvious chain of 1 doubling and 3
additions to produce 2P, 3P, 5P, 7P from P .

The idea of starting with {P, 2P, 3P, 4P, . . . , (2w − 1)P} (“fixed length-w
windows”) was introduced by Brauer long ago in [9]. By optimizing the choice
of w as a function of the bitlength `, Brauer showed that one can compute nP
for an `-bit integer n using ≈ ` doublings and at most ≈ `/ lg ` additions (even
without subtractions). The idea to start with {P, 2P, 3P, 5P, 7P, . . . , (2w − 1)P}
(“sliding length-w windows”) was introduced by Thurber in [22], saving some
additions. For comparison, the simple base-2 chains considered earlier use ≈ `
doublings and ≈ `/3 additions (on average; as many as `/2 in the worst case).
The benefit of windows increases slowly with `.

Doche and Imbert, in their paper [13] at Indocrypt 2006, introduced an
analogous improvement to double-base chains. Example: The “sliding-windows
double-base-2-and-3” equation

314159P = 212333P − 27335P − 24317P − 2030P

= 3(2(2(2(2(3(3(2(2(2(2(2(2(2(2(3P)))))− 5P)))))− 7P)))))− P

can be viewed as an algorithm to compute 314159P starting from {P, 3P, 5P, 7P}
with a chain of 3 triplings, 12 doublings, and 3 additions. It can therefore be
viewed as an algorithm to compute 314159P , starting from P , with 3 triplings,
13 doublings, and 6 additions. (The set {P, 3P, 5P, 7P} was not considered in
[13]; we use this example to emphasize the analogy between single-base chains
and double-base chains.)

Doche and Imbert state an algorithm to compute double-base chains for
arbitrary coefficient sets S containing 1. In their experiments they focus on sets
of the form {1, 2, 3, 22, 32, . . . , 2k, 3k} or sets of odd integers co-prime to 3. In
this paper we study several coefficient sets including all sets considered in [13]
and additional sets such as {P, 2P, 3P, 5P, 7P}.

Computing a chain. Finding the chain 314159 = 218 + 216 − 214 + 211 +
210 − 28 + 25 + 24 − 20 is a simple matter of finding the closest power of 2 to
314159, namely 218 = 262144; then finding the closest power of 2 to the difference
|314159− 262144| = 52015, namely 216 = 65536; and so on.

Optimizing double-base elliptic-curve single-scalar multiplication 9

Similarly, by inspecting the first few bits of a nonzero integer n one can easily
see which of the integers

± 1, ± 2, ± 22, ± 23, ± 24, . . .

± 3, ± 2 · 3, ± 223, ± 233, ± 243, . . .

± 5, ± 2 · 5, ± 225, ± 235, ± 245, . . .

± 7, ± 2 · 7, ± 227, ± 237, ± 247, . . .

is closest to n. By subtracting that integer from n and repeating the same process
one expands n into Thurber’s base-2 sliding-window chain

∑
i ci2ai with ±ci ∈

{1, 3, 5, 7} and a1 > a2 > a3 > · · · . For example, 216 · 5 = 327680 is closest to
314159; −211 ·7 = −14336 is closest to 314159−327680 = −13521; continuing in
the same way one finds the chain 314159 = 2165P − 2117P +283P +243P − 20P
shown above. Similar comments apply to sets other than {1, 3, 5, 7}.

Dimitrov, Imbert, and Mishra in [11, Section 3] proposed a similar, although
slower, algorithm to find double-base chains with ci ∈ {−1, 1}; Doche and Imbert
in [13, Section 3.2] generalized the algorithm to allow a wider range of ci. For
example, given n and the set {1, 3, 5, 7}, the Doche-Imbert algorithm finds the
product c12a13b1 closest to n, with ±c1 ∈ {1, 3, 5, 7}, subject to limits on a1

and b1; it then finds the product c22a23b2 closest to n − c12a13b1 , with ±c2 ∈
{1, 3, 5, 7}, subject to the chain conditions a1 ≥ a2 and b1 ≥ b2; continuing in
this way it expands n as

∑
i ci2ai3bi with ±ci ∈ {1, 3, 5, 7}, a1 ≥ a2 ≥ · · · , and

b1 ≥ b2 ≥ · · · .
(The algorithm statements in [11] and [13] are ambiguous on the occasions

that n is equally close to two or more products c2a3b. Which (c, a, b) is chosen?
In our new experiments, when several c2a3b are equally close to n, we choose
the first (c, b, a) in lexicographic order: we prioritize a small c, then a small b,
then a small a.)

The worst-case and average-case chain lengths produced by this double-base
algorithm are difficult to analyze mathematically. However, the average chain
length for all n’s can be estimated with high confidence as the average chain
length seen for a large number of n’s. Dimitrov, Imbert, and Mishra used 10000
integers n for each of their data points; Doche and Imbert used 1000; our new
experiments use 10000. We also plan to compute variances but have not yet done
so.

5 New results

This section describes the experiments that we carried out and the multiplication
counts that we achieved. The results of the experiments are presented as a table
and a series of graphs.

Parameter space. Our experiments included several bit sizes `, namely 160,
200, 256, 300, 400, and 500. The choices 200, 300, 400, 500 were used in [13] and
we include them to ease comparison. The choices 160 and 256 are common in
cryptographic applications.

10 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Our experiments included the eight curve shapes described in Section 3:
3DIK, Edwards, ExtJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, and
Jacobian-3. For comparison with previous results, and to show the importance
of optimized curve formulas, we also carried out experiments for Std-Jac and
Std-Jac-3.

Our experiments included many choices of the parameter a0 in [13, Algorithm
1]. The largest power of 2 allowed in the algorithm is 2a0 , and the largest power
of 3 allowed in the algorithm is 3b0 where b0 = d(`− a0)/ lg 3e. Specifically, we
tried each a0 ∈ {0, 10, 20, . . . , 10b`/10c}. This matches the experiments reported
in [13] for ` = 200. We also tried all integers a0 between 0.95` and 1.00`.

Our experiments included several sets S, i.e., sets of coefficients c allowed
in c2a3b: the set {1} used in [11]; the sets {1, 2, 3}, {1, 2, 3, 4, 8, 9, 16, 27, 81},
{1, 5, 7}, {1, 5, 7, 11, 13, 17, 19, 23, 25} appearing in the graphs in [13, Appendix
B] with labels “(1, 1)” and “(4, 4)” and “S2” and “S8”; and the sets {1, 2, 3, 4, 9},
{1, 2, 3, 4, 8, 9, 27}, {1, 5}, {1, 5, 7, 11}, {1, 5, 7, 11, 13}, {1, 5, 7, 11, 13, 17, 19} ap-
pearing in the tables in [13, Appendix B]. We also included the sets {1, 2, 3, 5},
{1, 2, 3, 5, 7}, and so on through {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25}; these sets
are standard in the base-2 context but do not seem to have been included in pre-
vious double-base experiments.

(We have considered additional sets such as {1, 2, 3, 4, 5, 7, 9}. Multiples of 6
are not worthwhile but we see some potential for coefficients 4, 8, 10, . . . in the
context of 3DIK coordinates. However, those sets are not yet included in our
experiments.)

We used straightforward combinations of additions, doublings, and triplings
for the initial computation of cP for each c ∈ S. We have considered, but not yet
included in our experiments, the use of quintuplings, merged operations, etc. for
this computation. Reader beware: as mentioned in Section 1, the costs of these
computations are ignored in [13], allowing arbitrarily large sets S for free and
allowing arbitrarily small costs of computing nP ; the costs in [13] thus become
increasingly inconsistent with the costs in this paper (and in reality) as S grows.

We follow the standard (although debatable) practice of counting S = 0.8M
and disregarding other field operations. We caution the reader that other weight-
ings of field operations can easily change the order of two systems with similar
levels of performance.

Experiments and results. There are 8236 combinations of `, a0, and S de-
scribed above. For each combination, we

• generated 10000 uniform random integers n ∈
{
0, 1, . . . , 2` − 1

}
,

• converted each integer into a chain as specified by a0 and S,
• checked that the chain indeed computed n starting the chain from 1, and
• counted the number of triplings, doublings, additions, readditions, and mixed

additions for those 10000 choices of n.

We converted the results into multiplication counts for the curve shapes 3DIK,
Edwards, ExtJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, Jacobian-
3, Std-Jac, and Std-Jac-3, obtaining a cost for each of the 82360 combinations
of `, curve shape, a0, and S.

Optimizing double-base elliptic-curve single-scalar multiplication 11

Figure 1 shows, for each ` (horizontal axis) and each curve shape, the mini-
mum cost per bit obtained when a0 and S are chosen optimally. The implementor
can easily read off the ranking of coordinate systems from this graph. Table 1
displays the same information in tabular form, along with the choices of a0 and
S.

There is no unique optimal choice of a0 and S for every curve shape which
gives rise to the fastest computation of a given `-bit integer. For example, using
Jacobian coordinates the best result is achieved by precomputing odd coefficients
up to 13 for an integer of bit length at most 300. For 400-bit integers the optimum
uses S = {1, 2, 3, 5, . . . , 17} and in the 500-bit case also 19 is included.

None of the optimal results for ` ≥ 200 uses a set of precomputed points
discussed in [11] or [13]. The optimal coefficient sets in every case were those
used in (fractional) sliding-window methods, i.e. the sets {1, 2, 3, 5, . . . }.

Figure 2 shows, for each a0 (horizontal axis) and each curve shape, the cost
for ` = 200 when S is chosen optimally. This graph demonstrates the impor-
tance of choosing the right bounds for a0 and b0 depending on the ratio of the
doubling/tripling costs. We refer to Table 1 for the best choices of a0 and S for
each curve shape.

The fastest systems are Edwards, ExtJQuartic, and InvEdwards. They need
the lowest number of multiplications for values of a0 very close to `. These
systems are using larger sets of precomputations than slower systems such as
Jacobian-3 or Jacobian, and fewer triplings. The faster systems all come with
particularly fast addition laws, making the precomputations less costly, and par-
ticularly fast doublings, making triplings less attractive. This means that cur-
rently double-base chains offer no or very little advantage for the fastest systems.
See [5] for a detailed description of single-base scalar multiplication on Edwards
curves.

Not every curve can be represented by one of these fast systems. For curves
in Jacobian coordinates values of a0 around 0.6` seem optimal and produce
significantly faster scalar multiplication than single-base representations.

Figure 3 shows, for a smaller range of a0 (horizontal axis) and each choice
of S, the cost for Jacobian-3 coordinates for ` = 200. This graph demonstrates
several interesting interactions between the doubling/tripling ratio, the choice of
S, and the final results. Figure 4 is a similar graph for Edwards curves. The op-
timal scalar-multiplication method in that graph uses a0 ≈ 195 with coefficients
in the set ±{1, 2, 3, 5, 7, 11, 13, 15}. The penalty for using standard single-base
sliding-window methods is negligible. On the other hand, triplings are clearly
valuable if storage for precomputed points is extremely limited.

References

1. P1363: Standard specifications for public key cryptography. IEEE, 2000.
2. Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange,

Kim Nguyen, and Frederik Vercauteren. The Handbook of Elliptic and Hyperelliptic
Curve Cryptography. CRC, 2005.

12 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Table 1. Optimal parameters for each curve shape and each `

` Curve shape Mults Mults/` a0 a0/` S

160 3DIK 1502.393800 9.389961 80 0.5 {1}
200 3DIK 1879.200960 9.396005 100 0.5 {1, 2, 3, 5, 7}
256 3DIK 2393.193800 9.348413 130 0.51 {1, 2, 3, 5, . . . , 13}
300 3DIK 2794.431020 9.314770 160 0.53 {1, 2, 3, 5, . . . , 13}
400 3DIK 3706.581360 9.266453 210 0.53 {1, 2, 3, 5, . . . , 13}
500 3DIK 4615.646620 9.231293 270 0.54 {1, 2, 3, 5, . . . , 17}
160 Edwards 1322.911120 8.268194 156 0.97 {1, 2, 3, 5, . . . , 13}
200 Edwards 1642.867360 8.214337 196 0.98 {1, 2, 3, 5, . . . , 15}
256 Edwards 2089.695120 8.162872 252 0.98 {1, 2, 3, 5, . . . , 15}
300 Edwards 2440.611880 8.135373 296 0.99 {1, 2, 3, 5, . . . , 15}
400 Edwards 3224.251900 8.060630 394 0.98 {1, 2, 3, 5, . . . , 25}
500 Edwards 4005.977080 8.011954 496 0.99 {1, 2, 3, 5, . . . , 25}
160 ExtJQuartic 1310.995340 8.193721 156 0.97 {1, 2, 3, 5, . . . , 13}
200 ExtJQuartic 1628.386660 8.141933 196 0.98 {1, 2, 3, 5, . . . , 15}
256 ExtJQuartic 2071.217580 8.090694 253 0.99 {1, 2, 3, 5, . . . , 15}
300 ExtJQuartic 2419.026660 8.063422 299 1 {1, 2, 3, 5, . . . , 21}
400 ExtJQuartic 3196.304940 7.990762 399 1 {1, 2, 3, 5, . . . , 25}
500 ExtJQuartic 3972.191800 7.944384 499 1 {1, 2, 3, 5, . . . , 25}
160 Hessian 1560.487660 9.753048 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Hessian 1939.682780 9.698414 120 0.6 {1, 2, 3, 5, . . . , 13}
256 Hessian 2470.643200 9.650950 150 0.59 {1, 2, 3, 5, . . . , 13}
300 Hessian 2888.322160 9.627741 170 0.57 {1, 2, 3, 5, . . . , 13}
400 Hessian 3831.321760 9.578304 240 0.6 {1, 2, 3, 5, . . . , 17}
500 Hessian 4772.497740 9.544995 300 0.6 {1, 2, 3, 5, . . . , 19}
160 InvEdwards 1290.333920 8.064587 156 0.97 {1, 2, 3, 5, . . . , 13}
200 InvEdwards 1603.737760 8.018689 196 0.98 {1, 2, 3, 5, . . . , 15}
256 InvEdwards 2041.223320 7.973529 252 0.98 {1, 2, 3, 5, . . . , 15}
300 InvEdwards 2384.817880 7.949393 296 0.99 {1, 2, 3, 5, . . . , 15}
400 InvEdwards 3152.991660 7.882479 399 1 {1, 2, 3, 5, . . . , 25}
500 InvEdwards 3919.645880 7.839292 496 0.99 {1, 2, 3, 5, . . . , 25}
160 JacIntersect 1438.808960 8.992556 150 0.94 {1, 2, 3, 5, . . . , 13}
200 JacIntersect 1784.742200 8.923711 190 0.95 {1, 2, 3, 5, . . . , 15}
256 JacIntersect 2266.135540 8.852092 246 0.96 {1, 2, 3, 5, . . . , 15}
300 JacIntersect 2644.233000 8.814110 290 0.97 {1, 2, 3, 5, . . . , 15}
400 JacIntersect 3486.773860 8.716935 394 0.98 {1, 2, 3, 5, . . . , 25}
500 JacIntersect 4324.718620 8.649437 492 0.98 {1, 2, 3, 5, . . . , 25}
160 Jacobian 1558.405080 9.740032 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian 1937.129960 9.685650 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian 2466.150480 9.633400 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian 2882.657400 9.608858 180 0.6 {1, 2, 3, 5, . . . , 13}
400 Jacobian 3819.041260 9.547603 250 0.62 {1, 2, 3, 5, . . . , 17}
500 Jacobian 4755.197420 9.510395 310 0.62 {1, 2, 3, 5, . . . , 19}
160 Jacobian-3 1504.260200 9.401626 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian-3 1868.530560 9.342653 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian-3 2378.956000 9.292797 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian-3 2779.917220 9.266391 200 0.67 {1, 2, 3, 5, . . . , 17}
400 Jacobian-3 3681.754460 9.204386 260 0.65 {1, 2, 3, 5, . . . , 17}
500 Jacobian-3 4583.527180 9.167054 330 0.66 {1, 2, 3, 5, . . . , 21}

Optimizing double-base elliptic-curve single-scalar multiplication 13

Fig. 1. Multiplications per bit (all bits, all shapes)

3. Rana Barua and Tanja Lange, editors. Progress in Cryptology—INDOCRYPT
2006, 7th International Conference on Cryptology in India, Kolkata, India, Decem-
ber 11–13, 2006, Proceedings, volume 4329 of Lecture Notes in Computer Science,
Berlin, 2006. Springer.

4. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.

hyperelliptic.org/EFD.
5. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on ellip-

tic curves. In ASIACRYPT 2007 [19], pages 29–50, 2007. http://cr.yp.to/

newelliptic/.
6. Daniel J. Bernstein and Tanja Lange. Inverted Edwards coordinates. In AAECC

2007 [8], pages 20–27, 2007. http://cr.yp.to/newelliptic/.
7. Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic curves in cryptogra-

phy, volume 265 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1999.

8. Serdar Boztas and Hsiao-Feng Lu, editors. AAECC 2007, volume 4851 of Lecture
Notes in Computer Science, Berlin, 2007. Springer.

9. Alfred Brauer. On addition chains. Bulletin of the American Mathematical Society,
45:736–739, 1939.

10. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

11. Vassil Dimitrov, Laurent Imbert, and Pradeep K. Mishra. Efficient and secure ellip-
tic curve point multiplication using double-base chains. In ASIACRYPT 2005 [20],
pages 59–78, 2005.

14 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Fig. 2. Importance of doubling/tripling ratio (200 bits, all shapes)

12. Christophe Doche, Thomas Icart, and David R. Kohel. Efficient scalar multiplica-
tion by isogeny decompositions. In PKC 2006 [23], pages 191–206, 2006.

13. Christophe Doche and Laurent Imbert. Extended double-base number system with
applications to elliptic curve cryptography. In INDOCRYPT 2006 [3], pages 335–
348, 2006.

14. Christophe Doche and Tanja Lange. Arithmetic of elliptic curves, chapter 13 in
[2], pages 267–302. 2005.

15. Sylvain Duquesne. Improving the arithmetic of elliptic curves in the Jacobi model.
Information Processing Letters, 104:101–105, 2007.

16. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44:393–422, 2007. http://www.ams.org/bull/2007-44-03/
S0273-0979-07-01153-6/home.html.

17. Darrel Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide to elliptic
curve cryptography. Springer, Berlin, 2003.

18. Huseyin Hisil, Gary Carter, and Ed Dawson. New formulae for efficient elliptic
curve arithmetic. In INDOCRYPT 2007 [21], 2007.

19. Kaoru Kurosawa, editor. Advances in Cryptology—ASIACRYPT 2007, volume
4833 of Lecture Notes in Computer Science, Berlin Heidelberg, 2007. Springer.

20. Bimal Roy, editor. Advances in Cryptology—ASIACRYPT 2005, 11th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Chennai, India, December 4–8, 2005, Proceedings, volume 3788, Berlin,
2005. Springer.

Optimizing double-base elliptic-curve single-scalar multiplication 15

Fig. 3. Importance of parameter choices (200 bits, Jacobian-3)

21. Kannan Srinathan, Chandrasekaran Pandu Rangan, and Moti Yung, editors.
Progress in Cryptology—INDOCRYPT 2007, volume 4859 of Lecture Notes in
Computer Science, Berlin, 2007. Springer.

22. Edward G. Thurber. On addition chains l(mn) ≤ l(n) − b and lower bounds for
c(r). Duke Mathematical Journal, 40:907–913, 1973.

23. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors. 9th interna-
tional conference on theory and practice in public-key cryptography, New York, NY,
USA, April 24–26, 2006, proceedings, volume 3958 of Lecture Notes in Computer
Science, Berlin, 2006. Springer.

A Appendix: Quintupling on Edwards Curves

In this section we give formulas to compute the 5-fold of a point on an Edwards
curve. We present two different versions which lead to the same result but have
a different complexity. The first version needs 17M + 7S while version 2 needs
14M + 11S. The second version is better if S/M is small.

Both versions were verified to produce the 5-fold of the input point (X1 : Y1 :
Z1) by symbolically computing 5(X1 : Y1 : Z1) using the addition and doubling
formulas from [5] and comparing it with (X5 : Y5 : Z5).

It is interesting to note that the formulas do not have minimal degree. The
new variables X5, Y5, Z5 have total degree 33 in the initial variables even though

16 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Fig. 4. Importance of parameter choices (200 bits, Edwards)

one would expect degree 52. Indeed, X5, Y5, Z5 are all divisible by the degree-8
polynomial ((X2

1−Y 2
1)2+4Y 2

1 (Z2
1−Y 2

1))((X2
1−Y 2

1)2+4X2
1 (Z2

1−X2
1)). Minimizing

the number of operations led to better results for our extended polynomials.
The 17M + 7S-formulas for quintupling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B;

E = 2C −D; F = D · (B −A); G = E · ((X1 + Y1)
2 −D);

H = F 2; I = G2; J = H + I; K = H − I; L = J · K;

M = D · E; N = E · F ; O = 2M2 − J ; P = 4N · O;

Q = 4K · N · (D − C); R = O · J ; S = R + Q; T = R −Q;

X5 = X1 · (L + B · P) · T ; Y5 = Y1 · (L−A · P) · S; Z5 = Z1 · S · T.

The 14M + 11S-formulas for quintupling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B; E = 2C −D;

F = A2; G = B2; H = F + G; I = D2 −H; J = E2;

K = G− F ; L = K2; M = 2I · J ; N = L + M ; O = L−M ;

P = N · O; Q = (E + K)2 − J − L; R = ((D + E)2 − J −H − I)2 − 2N ;

S = Q · R; T = 4Q · O · (D − C); U = R · N ; V = U + T ; W = U − T ;

X5 = 2X1 · (P + B · S) · W ; Y5 = 2Y1 · (P −A · S) · V ; Z5 = Z1 · V · W.

Note that only variables A . . . E have the same values in the two versions.

