
Robert Lemos, News.com, 2004.11.08:

“Virus writers elude Microsoft’s bounty

hunt

“Virus writers have a price on their

heads—but it’s done little to discourage

them.

“In the year since Microsoft kicked off

its Anti-Virus Reward Program, it has

tallied only a single success. The program

has offered US$1 million to informants

who help close official investigations into

four major viruses and worms, and has

another US$4 million earmarked for future

rewards, but the deluge of online threats

has continued to swell. �����

“German authorities arrested a teenager in

May after Microsoft tipped them off with

details about the alleged Sasser author

it had received from ����� a friend of the

suspected author. �����

“The Sasser worm, which started

spreading on May 1, has infected

an estimated 500,000 to 1 million

systems ����� If the alleged author of the

worm, Sven Jaschan, is convicted of

criminal charges, Microsoft will be on the

hook to pay out the bounty. �����

“A security company has hired Jaschan,

pending his conviction.”

2004.11.15: Guest lecture

by Jon Solworth, Director,

Kernel Security and Networking Lab,

CS.

2004.11.17: Midterm 2,

focusing on setuid and related topics.

Assignment due 2004.11.22: read

textbook Chapter 4.

The file-rewriting problem

Joe runs setuid program chsh

that reads /etc/passwd,

writes modified /etc/passwd.

chsh locks /etc/passwd

while rewriting it; other programs

wait until the file is complete.

Security problem: Joe sends a signal

to chsh, terminating it,

before the file is complete.

The rest of the file has been destroyed.

Fix: chsh can avoid signals.

Another way to hurt rewriting

Joe can fill up the disk,

so chsh has no space

to rewrite /etc/passwd

after truncating it.

Joe can attack any program,

not just setuid programs,

in this way.

Fix: Put /etc/passwd on one disk.

Put /home/joe on another disk.

(Or set a “quota” on Joe’s files.)

Carefully review all the files

outside /home/joe that might

expand under Joe’s influence.

A better way to rewrite files

chsh can write /etc/passwd.new

and then, when it’s complete,

rename("/etc/passwd.new",

"/etc/passwd").

If rename succeeds,

/etc/passwd has the new contents.

If rename fails,

/etc/passwd is unchanged.

Partial success is impossible;

rename is atomic.

Details: use a separate lock file;

check carefully for errors. Can even

handle power outages: use fsync

after writing, and use a careful filesystem.

Recap

Easy but lets Joe corrupt file:

don’t worry; be happy;

write directly to /etc/passwd.

Slightly more difficult,

doesn’t let Joe corrupt file:

write /etc/passwd.new; rename.

Substantially more difficult,

doesn’t let Joe corrupt file:

write directly to /etc/passwd,

after eliminating signals and full disks.

Guess what most people do?

Sendmail bug fixed 1995.09.16:

“ ����� destroying the alias database file by

setting resource limits low.”

More bugs discovered later.

(Did programmer consider rename?

Silly database design:

the database was actually two files

that had to be updated together.

Can’t do simultaneous rename

of two files.)

Eventual fix, 2000.03.01:

Nobody other than sysadmin

can touch the database file.

What else affects a setuid program?

See execve manual page.

BSD: “File descriptors open in the calling

process image remain open ����� Signals set

to be ignored in the calling process are set

to be ignored ����� Blocked signals remain

blocked ����� The new process also inherits

the following attributes from the calling

process: process ID, parent process ID,

process group ID, access groups, working

directory, root directory, control terminal,

resource usages, interval timers, resource

limits, file mode mask, signal mask.”

Attacker blocking signals

Each process has, in system data,

signal mask and signal actions.

Mask says which signals are blocked.

Actions say which signals are ignored;

which signals call functions;

the addresses of those functions.

(If a signal arrives and is blocked,

it is saved until the signal is un-blocked.

If a signal arrives and is ignored,

it is discarded.)

Blocked and ignored signals

are preserved by execve.

Last time: Setuid program

wasn’t expecting a signal.

Joe sends it one.

Opposite problem: Setuid program

sends itself a signal;

needs signal to make progress.

Joe blocks the signal

before running the program.

Fix: Program un-blocks signal

and un-ignores signal, using

sigprocmask and sigaction.

Attacker blocking permission bits

Each process has, in system data,

umask (“file mode mask”).

Typical umask: 022.

Another typical umask: 077.

Any permission bit in umask

is removed from new files.

e.g. open("foo",O_CREAT,0666)

creates foo with permissions

0644 if umask is 022;

or 0600 if umask is 077.

